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1. Introduction   

The purpose of this document is to report on the findings of the pilot investigation 

covering the northern and southern test sites for the Wiscland-2 land cover mapping project.  The 

pilot investigation was conducted to study input requirements, the classification scheme and 

associated accuracy, and to examine whether existing point/polygon-based datasets, such as 

Forest Inventory Analysis (FIA) and Continuous Forest Inventory (CFI), are useful in remote 

sensing based map-making.  The preliminary findings reported here address these issues in order 

with the supporting evidence in the form of figures and tables. 

 

2. Methodology 

2.1 Data 

 Landsat  
 The original WISCLAND product (Wiscland-1) was derived from Landsat Thematic 

Mapper (TM) data ca. 1992 at 30-meter nominal spatial resolution.  It is recommended that the 

new update to the land cover layer continue to be made from Landsat data, using the follow-up 

Landsat mission data such Landsat 7 Enhanced Thematic Mapper Plus (ETM+) sensor and/or 

newly launched (Feb 11, 2013) Landsat 8 Operational Land Imager (OLI).  Both of these sensors 

continue to provide observations at 30-meter spatial resolution, but with much improved signal-

to-noise ratio.  The Landsat 7 ETM+ sensor experienced an unrecoverable technical problem in 

May 2003 that rendered all images acquired after that date to have data gaps.  These data gaps 

cover an estimated 22 percent of any given Landsat 7 scene and are most pronounced along the 

edge of the scene and gradually diminish toward the center.  The maximum width of the data 

gaps along the edge of the image would be equivalent to one full scan line, or approximately 390 

to 450 meters (13 to 15 pixels).  The precise location of the missing scan lines will vary from 

scene to scene.  An area approximately 22 kilometers wide in the middle of the scene contains no 

data loss, and this region of each image is very similar in quality to images acquired before the 

technical problem occurred.  In fact, data quality in non-gap areas are of science quality, without 

any loss in radiometric fidelity, assessed by both NASA and USGS engineers. 

During the period between May 2003 and December 2011, Landsat 7 acquisitions with 

missing data were complemented with Landsat 5 TM acquisitions to alleviate the data gap issue 

but because of diminished on-board recording capabilities of Landsat 5, acquisitions were 

somewhat limited.  Between December 2011 and May 2013, Landsat 7 ETM+ data with gaps 

were the only source of observations.  Since May 2013 (with some acquisition going back to 

March 2013), the Landsat 8 OLI instrument has been operational and the data archive is 

growing.  Both of these sensors continue to provide the similar but improved spectral capabilities 

of the TM sensor used in Wiscland-1.  In light of these new developments, generating a 

minimum 30-meter spatial resolution land cover product for the proposed update is technically 

feasible, and practically possible.  However, the pilot study was conducted using Landsat 5 TM 
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and Landsat 8 OLI instrument data only, spanning several years centered around year 2010.  The 

footprints of interest were Landsat path/row 25/28, located in the north-central part of the state 

and Landsat path/row 24/30 in the south-central part of the state.  

 

SPOT 

The DNR Wisconsin Land cover business needs document highlighted the desire for a 

map at 10-meter spatial resolution, at least for select locations such as urban areas and small 

vegetation patches.  We have identified a free-of-charge limited data source, the Satellite Pour 

l’Observation de la Terre (SPOT), a French satellite system that has been in existence since the 

early 1980s.  It provides data in several spectral bands at 5-20 meter spatial resolution, 

depending on the satellite (SPOT-6 is the latest satellite in the series).  As a private entity, SPOT 

satellite data are not free and are purchased through various channels in the US.  However, as 

part of the North America Data Buy Program, USGS and NASA have purchased a large archive 

of SPOT data for every location in the US from January 1, 2010 through June 20, 2013 and are 

making these data available to federal and state government agencies at no cost 

(https://lta.cr.usgs.gov/SPOT_NADB). 

In terms of cost, it is possible that the entire archival data available for Wisconsin is 

available for free.  However, free availability of SPOT data does not mean it is the best (or first) 

choice for updating Wiscland-1.  In our view, the success of the update will depend highly on the 

temporal availability of images throughout the growing season, including at least one early, one 

mid, and one late season image.   

Figure 1 shows the spatial distribution of SPOT footprints across Wisconsin.  First to 

notice is that they are smaller than Landsat footprints, covering an area about an eighth of the 

area covered by a Landsat scene.  Second, approximately 100 individual SPOT footprints are 

required to cover the entire state as opposed to less than 20 individual Landsat scenes.  Figure 2 

depicts the temporal availability of SPOT data between 2009 and 2012 over Wisconsin.  One 

interpretation of this figure is that the temporal availability of SPOT data is not uniform across 

the state; some locations have greater than 15 images across three years while other locations 

have less than five, which may make it hard for accurate classification. 

Additionally, this unequal temporal distribution is also reflected in the distribution of 

images across the growing season.  Figure 3 shows that histogram distribution of all 500 SPOT 

images across a full year, combining images from 2009 to 2012.  As shown, the frequency is 

loaded towards peak summer (July) images  

To summarize, although we have identified a data source, free-of-charge, to be French 

SPOT system, a detailed investigation of the temporal availability (i.e. repeat coverage) of SPOT 

data does not appear to be sufficient, as delineating many of the vegetated classes require 

multiple views of the surface through the year to capture the differences in their phenological 

cycle.  This assessment was upheld by the Science Advisory Committee, where it was 

determined that 30m resolution (such as Landsat) is typically sufficient for as statewide project, 

and the lack of consistent temporal and spectral coverage of Wisconsin by the SPOT system 

would make it difficult to utilize on a statewide basis.   

  

https://lta.cr.usgs.gov/SPOT_NADB
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Figure 1. Landsat (black) and SPOT (red) individual image footprints over Wisconsin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Temporal distribution of SPOT data for every footprint across Wisconsin.  The legend 

and the color indicate the number of individual images available for that footprint between 2009 

and 2012.  Note that this information only reflects the data available from USGS as part of their 

data buy program.  It is likely that there are more images available but these images are not 

found in the USGS archives. 
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Figure 3. Histogram distribution of SPOT images by month across three years (2009-2012). 

 

In terms of data used in the pilot, Tables I and II list all the sources used.  A total of 142 

inputs were used for the northern site and 166 inputs were used for the southern site in the pilot 

study, majority of which was from satellite observations. 

 
Table I. Inputs used in the pilot study for the northern test site. 

Dataset Sensor Features Date Source Res (m) 

Landsat LT5 1-5, 7, NDVI 04/16/09 USGS 30 

Landsat LT5 1-5, 7, NDVI 06/03/09 USGS 30 

Landsat LT5 1-5, 7, NDVI 09/07/09 USGS 30 

Landsat LT5 1-5, 7, NDVI 09/23/09 USGS 30 

Landsat LT5 1-5, 7, NDVI 01/29/10 USGS 30 

Landsat LT5 1-5, 7, NDVI 03/02/10 USGS 30 

Landsat LT5 1-5, 7, NDVI 03/18/10 USGS 30 

Landsat LT5 1-5, 7, NDVI 04/19/10 USGS 30 

Landsat LT5 1-5, 7, NDVI 07/08/10 USGS 30 

Landsat LT5 1-5, 7, NDVI 08/09/10 USGS 30 

Landsat LT5 1-5, 7, NDVI 09/10/10 USGS 30 

Landsat LT5 1-5, 7, NDVI 09/26/10 USGS 30 

Landsat LT5 1-5, 7, NDVI 10/12/10 USGS 30 

Landsat LT5 1-5, 7, NDVI 12/15/10 USGS 30 

Landsat LT5 1-5, 7, NDVI 05/08/11 USGS 30 

Landsat LT5 1-5, 7, NDVI 05/24/11 USGS 30 

Landsat LT5 1-5, 7, NDVI 06/25/11 USGS 30 

Landsat LT5 1-5, 7, NDVI 07/11/11 USGS 30 

Landsat LT5 1-5, 7, NDVI 08/28/11 USGS 30 
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Landsat LC8 NDVI 12/07/13 derived
1
 30 

Landsat LT5 NDVI maximum 2009-2011 derived
1
 30 

Landsat LT5 NDVI minimum 2009-2011 derived
1
 30 

Landsat LT5 NDVI mean 2009-2011 derived
1
 30 

Landsat LT5 NDVI standard 

deviation 

2009-2011 derived
1
 30 

Landsat LC8 NDVI 12/07/13 derived
1
 30 

Elevation (DEM)   2010 DNR 30 

Slope   2010 derived
2
 30 

Topographic Wetness Index  2010 derived
2
 30 

2011 Crop Data Layer  2011 NASS 30 

Soil organic carbon  various SSURGO 30 

Soil water holding capacity  various SSURGO 30 
1
derived from the USGS data

 

2
derived from the DEM data 

 
Table II. Inputs used in the pilot study for the southern test site. 

Dataset Sensor Features Date Source Res(m) 

Landsat LT5 1-5, 7, NDVI 04/28/10 USGS 30 

Landsat LT5 1-5, 7, NDVI 05/14/10 USGS 30 

Landsat LT5 1-5, 7, NDVI 07/01/10 USGS 30 

Landsat LT5 1-5, 7, NDVI 07/17/10 USGS 30 

Landsat LT5 1-5, 7, NDVI 08/18/10 USGS 30 

Landsat LT5 1-5, 7, NDVI 10/05/10 USGS 30 

Landsat LT5 1-5, 7, NDVI 10/21/10 USGS 30 

Landsat LT5 1-5, 7, NDVI 11/06/10 USGS 30 

Landsat LT5 1-5, 7, NDVI 12/08/10 USGS 30 

Landsat LT5 1-5, 7, NDVI 01/09/11 USGS 30 

Landsat LT5 1-5, 7, NDVI 03/14/11 USGS 30 

Landsat LT5 1-5, 7, NDVI 03/30/11 USGS 30 

Landsat LT5 1-5, 7, NDVI 05/01/11 USGS 30 

Landsat LT5 1-5, 7, NDVI 05/17/11 USGS 30 

Landsat LT5 1-5, 7, NDVI 06/02/11 USGS 30 

Landsat LT5 1-5, 7, NDVI 07/04/11 USGS 30 

Landsat LT5 1-5, 7, NDVI 07/20/11 USGS 30 

Landsat LT5 1-5, 7, NDVI 08/05/11 USGS 30 

Landsat LT5 1-5, 7, NDVI 08/21/11 USGS 30 

Landsat LT5 1-5, 7, NDVI 09/06/11 USGS 30 

Landsat LT5 1-5, 7, NDVI 09/22/11 USGS 30 

Landsat LT5 1-5, 7, NDVI 10/08/11 USGS 30 
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Landsat LT5 1-5, 7, NDVI 10/24/11 USGS 30 

Landsat LC8 NDVI 02/02/14 derived
1
 30 

Landsat LT5 NDVI maximum 2009-2011 derived
1
 30 

Landsat LT5 NDVI minimum 2009-2011 derived
1
 30 

Landsat LT5 NDVI mean 2009-2011 derived
1
 30 

Landsat LT5 NDVI standard 

deviation 

2009-2011 derived
1
 30 

Elevation (DEM)   2010 DNR 30 

Slope   2010 derived
2
 30 

Topographic Wetness Index  2010 derived
2
 30 

2011 Crop Data Layer  2011 NASS 30 

Total organic carbon  various SSURGO 30 

Total water holding capacity  various SSURGO 30 
1
derived from the USGS data

 

2
derived from the DEM data 

 

The satellite data were chosen based on image availability and cloud cover, where all 

available images over 2009-2011 were acquired, cloud-masked, and processed.  Spectral metrics 

and indices were chosen and calculated based on extensive previous work emphasizing the 

importance of vegetation indices in distinguishing vegetated land cover.  Other work has shown 

significant accuracy increases for classifications incorporating ancillary spatial datasets over 

spectral data alone (e.g. Watanchaturaporn, 2008).  The five ancillary datasets used in the pilot 

were particularly chosen with attention to the environmental conditions and characteristics of the 

target land cover classes.  For example, while upland and lowland shrub may appear similar in 

spectral data, elevation information should logically help separate the two classes.  Similarly, soil 

properties such as total organic carbon and water holding capacity should help delineate tree 

species.  Note that this while this list represents all the features used for the pilot study, feature 

selection process is ongoing and any new, usable satellite observations that become available 

will be acquired and integrated. 

 

2.2 Classification algorithm 
Simply put, an image classification exercise is to relate input data, either derived from 

satellites or other sources, to predetermined output categories (or classes).  In this pilot, the goal 

is to decide whether a pixel belongs to a particular category defined as a part of four different 

classification schemes described below.  One way to arrive at these decisions is to use expert 

opinion in which observed environmental data are related to known ecological, phenological, and 

environmental characteristics of a category by an expert. However, this approach tends to be 

more costly and requires involvement of experts.  The alternative is to use a classification 

algorithm, particularly those based on machine learning domain, to help develop these “rules” to 

assign the appropriate class to a pixel.  In this investigation, we used two supervised 

classification algorithms, Support Vector Machines (SVM) and decision trees (DT).  

SVMs are a supervised nonparametric statistical learning technique that is increasingly 

being used by the remote sensing community (Huang et al., 2002; Mantero et al., 2005; 

Mountrakis et al 2011).  The heart of an SVM training algorithm lies in the concept of a linear 
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hyperplane – an optimal boundary found through an iterative learning procedure that separates 

the training set into a discrete predefined number of classes while minimizing misclassifications 

errors (Vapnik, 1979; Zhu and Blumberg, 2002).  Several approaches have been developed to 

improve SVM predictive accuracies using multispectral remote sensing data. These include the 

soft margin approach and kernel-based learning that lead to SVM optimization, although the 

kernel functions often result in more expensive parameterization. 

Prior research has identified at least three benefits of SVMs that make them particularly 

suitable for remote sensing applications. First, regardless of the size of the learning sample, not 

all the available examples are used in the specification of the hyperplane. This allows SVMs to 

successfully handle small training data sets because only a subset of points – the support vectors 

– that lie on the margin(s) are used to define the hyperplane. Second, unlike many statistical 

classifiers, SVMs do not make prior assumptions on the probability distribution of the data, 

which leads to reduction in classification errors when input data do not conform to a required 

distribution (e.g. Gaussian). Third, SVM-based classification algorithms have been shown to 

produce generalizable models from a set of input training data, eliminating the notion of 

overfitting. 

To perform the SVM-based classification, we used the LIBSVM implementation that 

provides linear, polynomial (cubic) and radial-basis kernels (Chang C-C and Lin J-C, 2011). The 

LIBSVM software is an open source tool and can be downloaded from 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/. This implementation includes C-support vector 

classification (C-SVC), n-support vector classification (n-SVC), distribution estimation (one-

class SVM), e-support vector regression (e-SVR), and n-support vector regression (n-SVR) 

formulations. All SVM formulations supported in LIBSVM are quadratic minimization 

problems. Using the radial-basis kernel classification option, the LIBSVM required only two 

parameters to be defined: the kernel parameter c and the cost parameter C. Both of these 

parameters are data dependent and are identified separately for each footprint/date-pair 

combination using the grid search option over log-transformed hyper-parameters as suggested by 

(Hsu C-W et al., 2001).  Note that SVMs have been shown to perform well given a certain level 

of noise (i.e. mislabeled training data), which is also considered as another advantage of SVMs. 

Decision trees are becoming widely utilized in large area mapping of land cover where 

large and complex spectral datasets require robust algorithms. Decision trees are constructed 

through the recursive partitioning of training data according to a statistical test applied to the 

training features (here, value test of a spectral feature). After they are built, unlabeled pixels are 

sorted down the tree according to the decision rules and eventually terminate in a class 

assignment. Ten trees are estimated using boosting, a technique that improves class 

discrimination by iteratively training classifiers based on different weightings of the training 

data. Because a class label is assigned with each iteration of the boosting algorithm, together the 

ensemble of trees provides an estimate of conditional probabilities for each class at every pixel.  

The decision tree algorithm utilized for this study is the C4.5 (Quinlan, 1993).  The splitting 

criterion used in C4.5 is information gain, a statistical measure related to entropy which 

measures the reduction in uncertainty related to assigning a class label after the classes are 

partitioned according to the attribute test.  Because the learning process depends on a heuristic 

search approach, DT are often considered nonmetric rather than nonparametric although like 

SVM they do not require assumptions about the distribution of the data. The source code for 

C4.5 is also open source and can be downloaded from 

http://www2.cs.uregina.ca/~dbd/cs831/notes/ml/dtrees/c4.5/tutorial.html.  

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www2.cs.uregina.ca/~dbd/cs831/notes/ml/dtrees/c4.5/tutorial.html
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Numerous studies have demonstrated the utility of both SVM and DT, and several have 

also compared the performance of the two for land cover mapping applications (Huang, 2002; 

Giri, 2012; Schneider, 2012). While map accuracy produced from both SVM and DT is often 

high relative to other algorithms, SVM consistently produces more accurate results than decision 

trees. Moreover, SVM has been shown to perform well with large amount of missing or cloud-

contaminated data and have less tendency to overfit on the training data (and thus perform better 

when classifying unseen pixels). These findings have been confirmed on the training data 

(detailed below) used for this pilot, where initial tests showed a slight but notable (average 3%) 

higher accuracy for SVM. For these reasons, the Phase II work will likely move forward with the 

classification using SVM.  However, because SVM are processing- and time-intensive, the map 

products produced for the pilot have been produced with the C4.5 decision tree algorithm.  

 

2.3 Training data and the classification schemes  
Since we take a supervised classification approach in the pilot study, the training 

(learning) data are extremely important.  Training data refer to a set of input features or 

exemplars with known class identities.  Depending on the nature of desired classes, they can be 

generated from ground surveys, image interpretation, or derived from other datasets.  In this 

investigation, the training data is derived and synthesized from a variety of existing sources, 

including national-and state-level forest and wetland inventories, regional ground surveys, and 

ground truth data from Wiscland-1 project.  While the reference data are spatially distributed 

throughout the state, many of the data sources emphasize a specific land cover (e.g. forest types) 

so not all sources provide points in each footprint. 

Perhaps more important information about the training data is contained in its class-

specific counts.  While there is variation in the source of the training data, there is much more 

variation in class specific training data.  With respect to class specific data, we need to define the 

classification schemes used in the pilot study.  To better understand the effect of categorical 

detail on classification accuracy, we took the draft Wiscland-2 classification scheme (Appendix 

A) and generated four different sets of class schemes, each with increasing complexity.  These 

complexities are labeled as levels in the following discussion where level 1 refers to the most 

generalized and level 4 refers to the most specific scheme.   

The level 1 classes can be considered generalized land cover categories, separating 

uplands from lowlands, forests from other vegetation types, and non- or sparsely-vegetated (e.g. 

barren, urban, water) areas.  Level 2 categories add more depth, separating forest types (i.e. 

deciduous and coniferous), three different types of lowlands (e.g. meadows, shrubs, and forested 

lowlands), and two grassland categories.  Levels 3 and 4 add much more categorical detail to the 

classification, going down to species level, and are targeting specific stand-based forest 

categories that have both forestry and deer management importance.  Note that these levels 

correspond to the levels identified in the draft Wiscland-2 classification scheme.  In the final 

product, the goal is to have the classes across the 4 levels ‘nested’, with areas that are classified 

in level 1 divided into further detail of species-level in level 4 and minimized shift between 

categories among the map levels.  However, time constraints on creating the maps for this pilot 

program prevented this forced nesting from being performed on the pilot sites.  Individual 

classifications were run at each level without ‘nesting’, resulting in some shift in categories 

between maps as the inputs (training data) shifted slightly with each classification scheme. 

Because the training data are extracted from several projects designed to serve diverse 

needs, synthesis and standardization of the training data was an integral component of the 
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classification process.  With the exception of two training data sources (Forest Inventory 

Analysis (FIA) and Continuous Forest Inventory (CFI)), all reference data were provided in the 

form of polygons with a range of associated attributes related to the land properties.  To render 

these data more functional for training in the classification step, where each sample is associated 

with an individual 30m pixel, points were randomly sampled from each polygon.  This sampling 

procedure has the added advantage of increasing the sample size, which is important for rare land 

cover classes.  Points were generated at the same density for each polygon.  The relevant 

attributes from the polygon are maintained in the point file and sources are synthesized within a 

central database. 

Another necessary step in developing the training database was translating each 

classification scheme used in the source data into the Wiscland-2 land cover scheme.  This is 

done in a procedure called cross-walking wherein each land cover class is cross-referenced from 

a land cover class in one scheme to an analogous class in another scheme.  While some cases are 

simply one-to-one matches between the schemes, others involve refining definitions and 

applying thresholds to ensure that each sample given a label under the draft Wiscland-2 scheme 

meets the same criteria.  Most notably, several forestry sources provide stand-level information 

(e.g. FIA, CFI, WisFIRS reconnaissance (Recon)).  For these, a purity ratio was calculated and a 

threshold applied to determine whether the sample fits into the definition of a Wiscland-2 forest 

class.  The threshold is chosen based on definitions provided by the original data sources and 

range from 65% stand purity (for FIA, CFI) to 75% stand purity (WisFIRS Recon).  Any samples 

not meeting these thresholds were not included in the samples database. 

In all other data sources, all samples were included in the database and cross-walked to 

the most appropriate class or flagged to revisit.  There are several cases where the land cover 

label for a sample was provided, but not at the requisite level of detail to match a level 4 class in 

the Wiscland-2 scheme (e.g. “Emergent/Wet Meadow” without sub-categorization).  In these 

cases, the most appropriate and detailed class label possible was assigned.  At the pilot stage, 

these samples are included in the database and are used for training, even though in absence of 

labels for all levels they cannot be used for the higher level classifications. For this reason, the 

training sample will likely be limited to only those sites that can be categorized down to level 4 

during Phase II.  In the following sections, any data counts refer to the anticipated training 

sample, where sites without detailed (level 4) information are removed. However, the 

classifications discussed in the Results section of this paper are based on classifications utilizing 

all of the available training data, not just limited to the ‘ideal’ reference points with detailed 

information. 

Relatedly, several data sources include sample points falling in agricultural classes, 

which are all currently included in the database.  Agricultural classes are a special case in this 

workflow for several reasons.  First several, more accurate sources of agricultural land cover 

information are already available at the state level.  The Cropland Data Layer (CDL) produced 

by the National Agricultural Statistics Service produces annual updates a 30 m spatial dataset 

containing information on crop type with high accuracy for the target classes (85-97%).  

Secondly, while the Wiscland-2 land cover map aims to provide a static snapshot of the land, 

agricultural landscape tend to be more dynamic, rotating over varying intervals. A statewide 

layer containing crop rotation information derived from the CDL and local knowledge and 

defined for the Common Land Unit (CLU) is available to further refine the cropland categories. 

Given the dynamism and availability of current agricultural data, these classes will not be 

classified directly from satellite data like the other land cover classes.  At this point, neither the 
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CDL nor crop rotation information has been integrated for the pilot map results.  All agricultural 

samples are currently maintained in the database and are included in the classification, while the 

final product will utilize CDL crop data and will not classify agricultural areas using collected 

reference data.   

 

Training data: Northern site 

Training data for the northern site were extracted from four separate sources, resulting in 

149,900 unique samples (Table III). 

 
Table III. The source and the counts of training data for the northern site 

Source Count Notes 

Recon 135691  

Wiscland-1 11278 Mostly non-forest categories 

FIA 1707  

CFI 1224  

 

Based on this arrangement, the source of training data is very much unbalanced: a large 

majority of the training data is generated from the Recon forest inventory data.  The impact of 

this distribution is clear in Table IV, which provides information the four classification schemes, 

along with training data counts for each class in each level. Levels 1 and 2 are heavily weighted 

towards forestry categories, partially because the majority of the data sources (Recon, FIA, and 

CFI) are forest-related inventory sources.  In Levels 3 and 4, there is more representation in 

counts between categories, although the most common classes are still forest-related.  Several 

classes have few training sites available, which may be due to a lack of collection sites or that 

specific land cover being rare on the landscape.  A review of the reference data available 

compared to the landscape composition is discussed in the following section.  It is not clear at 

this time how or if this imbalance in the training samples affect classification or class-specific 

accuracy, but some preliminary information can be extracted and is discussed below.  

 

  



11 
 

 

 

  

T
a
b

le
 I

V
. 
 D

es
cr

ip
ti

o
n

 a
n

d
 t

h
e 

co
u

n
ts

 o
f 

fo
u
r 

cl
as

si
fi

ca
ti

o
n
 l

ev
el

s 
u
se

d
 i

n
 t

h
e 

n
o
rt

h
er

n
 p

il
o
t

 



12 

 

Training data: Southern site 

Training data for the southern site consisted of 57,483 unique samples from 16 separate 

data sources (Table V).  The source data for these samples are listed in Table V below.  A variety 

of data sources were available for this pilot location.  Wiscland-1 and Recon were the most 

prevalent data sources, at approximately 16% of test sites per source each, but several sources 

focused on grassland and wetland habitat were also highly utilized.  FIA and CFI data figured 

much less prominently in this site. 

 
Table V. The source and the counts of training data for the southern site 

Source Count Notes 

Wiscland-1 9359 Mostly non-forest categories 

Recon 8980  

DNR Grassland Bird land cover map 7786  

FWS Horicon Marsh land cover 5806  

DNR Bird Conservation Areas 5681  

DNR Badger home ranges land cover 3831  

DNR Glacial Habitat Restoration Area 

reference sites 3121  

DNR Duck Habitat study 2831  

DNR Pheasant Unit land cover map 2580  

DNR Biomass land cover map 1842  

FWS Waterfowl Production Area land 

cover map 1496  

DNR Seeded Grasslands 1489  

DNR Southwest Grasslands reference sites 1122  

DNR Farming Agreements 1009 Grassland habitat data 
FIA 444  

CFI 106  

 

 The class specific counts for the southern site are listed in Table VI.  With respect to 

counts per class, Levels 1 and 2 are weighted towards grassland-type categories at this pilot site.  

This is not surprising as a large number of the data sources were focused on grassland habitat 

project areas.  Agriculture and forestry sites also had a significant amount of training points 

available.  In Levels 3 and 4, there is more homogeneity in counts between categories, although 

the samples appear to be weighted toward pasture and agricultural land cover classes.  The 

southern site does not have as large of a bias toward forest classes as was present in the northern 

site, but that is to be expected with the differences in land use between these two sites, 

agriculture is much more prevalent in the southern part of the state compared to the north. 
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2.4 Class accuracy vs. sample size 

 An important step in finalizing the samples database includes determining whether each 

class is sufficiently represented.  While there is no direct way to test this, there are a few 

measures than can be used to assess the effect of sample size on classification accuracy.  Note 

that it is clear from the test samples listed so far that certain categories may have unacceptably 

low sample sizes.  To evaluate the sample database and to test the effect of sample size on 

classification accuracy, several tests were performed.  First, we performed an initial test to 

evaluate the general relationship between class size and accuracy.  Secondly, we looked at 

whether scaling down the entire sample had an effect on accuracy. Thirdly, we compared the 

class frequencies of the training sample to the landscape composition approximated from 

existing land cover data.   

To better understand the relationship between sample size and class-specific accuracy, we 

first ran a cross-validation exercise.  Cross-validation is a model validation technique for 

assessing how the results of a statistical analysis will generalize to an independent data set. It is 

mainly used in settings where the goal is prediction, and one wants to estimate how accurately a 

predictive model will perform in practice. To do this, we took the observations falling within the 

northern pilot site and randomly split it into known data (60%) on which training is run (training 

dataset), and a dataset of unknown data (40%) against which the classification model is tested 

(testing dataset) for the northern site (Table VII).  To get a complete picture of the expected 

accuracy, we repeated this procedure 100 times, each time partitioning the original data into 

different complementary subsets of training and validation sets.   

To test the effect of sample size on classification accuracy, we count the number of 

correct and incorrect results as:  

 

True positive (TP): A class is correctly identified as that class  

False positive (FP): Other categories are falsely identified as the category of interest 

True negative (TN): A category is correctly identified as not being another category 

False negative (FN): The category of interest is not identified correctly but it should have been 

 

Then, we plot the individual class accuracies, measured by different metrics against the 

samples in the training data used to train the classifier: 

 

Precision (PREC): describes the fraction of the test samples, for each class, correctly classified, 

that are relevant to the user's information need.  Precision is analogous to positive predictive 

value. It is calculated as TP/(TP + FP) and can be interpreted as the rate of 1 – the omission 

error. 

 

Recall (RECALL): describes the fraction of the test samples, for each class, that are relevant to 

the inquiry and are successfully classified.  Recall is often called sensitivity and can be 

interpreted as the probability that correct test samples are retrieved by the classification.  Note 

that it is trivial to achieve recall of 100% by returning all test samples as the correct class. 

Therefore recall alone is not enough but one needs to measure the number of non-relevant test 

samples that were classified as the category of interest also, for example by computing the 

precision.  Recall is calculated as TP/(TP + FN) and can be interpreted as the rate of 1 – the 

commission error. 
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Although precision and recall can be used to evaluate and algorithms outputs, these metrics often 

have an inverse relationship in a classification, increases in precision may be correlated with 

decreases in recall.  Therefore it is difficult to set a numeric goal for these metrics to designate a 

classification as ‘good’ without taking context and goals of the classification into account.  These 

metrics are useful in developing additional evaluation metrics for a classification, such as the F-

measure.   

 

F-Measure (F(1.0)): describes the weighted harmonic mean of precision and recall, the 

traditional F-measure or balanced F-score is: (2 * precision * recall)/(precision + recall).  This is 

also known as the F1 measure, because recall and precision are evenly weighted.  In other words, 

the user measures the effectiveness of retrieval with respect to a user who attaches as much 

importance to recall as precision.  An evaluation of f-measure also requires consideration of the 

context and goals of the classification, but for this pilot a score of greater than 0.5 would be 

considered good. 

 

Area Under the ROC curve (AUC): The accuracy of a classification problem depends on how 

well it separates the class of interest from those that are not of interest.  One way to measure the 

accuracy is to calculate the area under the Receiver Operating Characteristic (ROC) curve.  An 

area of 1 represents a perfect classification; an area of .5 represents an OK classification. The 

AUC metric simply represents this measure. 

 

Table VII.  Accuracy metrics and sample size per class for level 2 classification for northern site. 

Class 

Description 

Sample 

Size 

TP FP TN FN PREC RECALL F(1.0) AUC 

Emergent/Wet 

Meadow 25 5 4 19971 20 0.55556 0.2 0.29412 0.5999 

Lowland Shrub 89 15 7 19904 74 0.68182 0.16854 0.27027 0.58409 

Forested 

Wetland 3015 

237

1 494 16491 644 0.82757 0.7864 0.80646 0.87866 

Barren 9 1 0 19991 8 1 0.11111 0.2 0.55556 

Shrubland 1 0 0 19999 1 0 0 0 0.5 

Low Intensity 

Urban 1 1 1 19998 0 0.5 1 0.66667 0.99997 

Cropland 273 143 57 19670 130 0.715 0.52381 0.60465 0.76046 

Grassland 168 89 48 19784 79 0.64964 0.52976 0.58361 0.76367 

Hay 104 45 34 19862 59 0.56962 0.43269 0.4918 0.71549 

Coniferous 

Forest 2749 

195

8 465 16786 791 0.80809 0.71226 0.75715 0.84265 

Broad-leaved 

Deciduous 

Forest 13390 

126

83 1400 5210 707 0.90059 0.9472 0.92331 0.8677 

Open Water 176 172 7 19817 4 0.96089 0.97727 0.96901 0.98846 

 

Because of the potential accuracy gains from increasing sample size, a 100-crosshold 

validation exercise was conducted to test whether a revised sampling technique could provide 

sufficient training data and improve classification results.   For efficiency, tests were performed 

for one classification level for the northern site.  Given the importance of the forest categories to 
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the Wiscland-2 project, the test was performed for the 10 forest classes included in the Level 3 

classification (Figure 4).  The number of training samples iteratively increased by 1000 samples 

across distributed between all 10 classes. The results reiterate the trend shown in the previous 

tests, accuracy increases with increasing sample size, but with diminishing returns.   

 
Figure 4. Changes in overall accuracy with increasing sample size. 

 
 

While these tests indicate that there is a relationship between sample size and accuracy, 

because land cover is distributed unevenly across space and training data are somewhat limited 

by cost and accessibility, there is not necessarily potential to gather hundreds or thousands of 

samples for every land cover class.  Moreover, classes with smaller sample sizes may have lower 

representation in the sample simply because they are rare in the landscape.  If so, these classes 

are expected to have lower class accuracies than more predominant classes.  Thus, an important 

step in finalizing the samples database includes determining whether each class is sufficiently 

represented.   

As indicated above, the training dataset is quite imbalanced, particularly in the northern 

site where forest classes constitute the majority of the training exemplars and other classes are 

poorly represented.  To evaluate whether the sample class distribution is representative of the 

landscape, class frequencies from the samples database were compared against the landscape 

composition as characterized in Wiscland-1.  While Wiscland-1 is not expected to exactly reflect 

the current landscape because of the age of data, it does provide a general indication of the 

landscape composition appropriate for this exploratory analysis.  Wiscland-1 land cover 
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composition was calculated for both the northern and southern sites and the per-class 

composition was compared to the distribution of reference data points generated.  The results of 

these comparisons are shown in tables VIII and IX.   

Overall, the distribution of sample points is quite similar to the Wiscland-1 composition, 

indicating that the sample is representative of the landscape. Some categories like “Aspen” are 

oversampled. Oversampling is not a significant problem as the sample can simply be reduced by 

sub-setting the sample points that better reflect the composition of the landscape.  Reducing the 

sample in these overrepresented classes will also have the effect of boosting the relative 

proportions of some underrepresented classes. Some urban and agriculture classes appear 

underrepresented in the current database in each pilot scene. Given the proposed methods of 

utilizing CDL for agricultural classes and manual collection of additional urban reference data 

through interpretation of imagery, neither is anticipated to present an issue.  First, although 

agriculture sites are present in both the database and in the classification at this pilot stage, the 

final product will be classified according to existing cropland data rather than image 

classification. While urban cover will be classified using the image data, the class representation 

will be augmented through photo-interpretation of the Landsat data or Google Earth high 

resolution imagery. 

More pertinently, several categories lack sufficient sites in the current sample.  For 

example, Table VIII shows that while only 0.72% of the samples fall into the “Mixed/Other 

Broadleaf Deciduous Forest” class, it composes approximately 15% of the landscape. Part of this 

issue simply relates to difficulties in cross-walking between two classification schemes (e.g. the 

“Mixed/Other Broadleaf Deciduous Forest” is not a category in the Wiscland-2 scheme).  

However, if some misrepresentation is assumed to be true, there are two potential solutions.  

First, more data sources may be acquired in the underrepresented classes and integrated into the 

database.  Alternatively, the classification may require the use of all samples in the database 

rather than only those that have the level of detail required for the level 4 scheme.  In this case, 

the “Mixed/Other Broadleaf Deciduous Forest” category could be boosted from 1,083 up to 

16,222 sites if the sites that fit into the category but do not provide species-level detail are 

included. 

 
Table VIII.  Landscape composition vs. sample composition for the northern site 

Class Description Percent Cover (Wiscland-1) Percent of Samples 

High Intensity Urban 0.10 0.00 
Low Intensity Urban 0.20 0.03 
Golf Course 0.02 0.00 
Agriculture

1
     

Primary Row Crops
1
     

Corn 0.27 0.95 
Other Row Crops 0.56 0.42 
Forage Crops 0.87 0.46 
Cranberries 0.06 0.04 
Grassland

2
 5.23 0.82 

Jack Pine 2.32 2.38 
Red Pine 1.91 9.05 
White Spruce 0.01 0.54 
Mixed Coniferous/Other Forest 1.94 1.53 
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Aspen 19.41 59.80 
Oak 0.10 3.53 
Maple 6.47 1.71 
Sugar Maple 3.97 1.06 
Mixed/Other Broad-leaved Deciduous 

Forest
3
 15.57 0.72 

Mixed Deciduous/Coniferous Forest
4
 6.72   

Open Water 5.13 0.84 
Emergent/Wet Meadow

2
 1.78 0.16 

Lowland Shrub Wetland 2.17   
Broad-leaved Deciduous Lowland Shrub 6.19 0.35 
Broad-leaved Evergreen Lowland Shrub 0.93 0.09 
Needle-leaved Lowland Shrub 0.16 0.00 
Broad-leaved Deciduous Forested 

Wetland 2.82 0.00 
Coniferous Forested Wetland 5.69 12.67 
Mixed Deciduous/Coniferous Forested 

Wetland 4.89 0.00 
Barren 1.32 0.03 
Shrubland

2
 1.48 0.02 

  100.00 100.00 
1
Indicates a class that is further subdivided. The total is equal to the sum of the children so are not 

counted in the total.
 

2
While these categories are further subdivided in the proposed Wiscland2 class scheme, no more detailed 

information exists in the current sample db. The most detailed available data were used.
 

3
More samples are available for this level 2 category (n=16222), but they do not provide full level 4 detail 

information so were not counted. This larger class includes broad leaf deciduous (4200), as well as paper 

birch, white ash, and central hardwoods/walnut.
 

4
This class was removed from the Wiscland2 classification scheme. 

 
 

Table IX.  Landscape composition vs. sample composition for the southern site 

Class Description Percent Cover (Wiscland-1) Percent of Samples 

High Intensity Urban 0.98 0.21 
Low Intensity Urban 0.85 1.34 
Golf Course 0.13 0.13 
Agriculture

1
     

Primary Row Crops
1
     

Corn 21.47 15.39 
Other Row Crops 8.91 5.02 
Forage Crops 21.12 18.20 
Cranberries 0.00 0.00 
Grassland 12.39 12.79 
Jack Pine 0.33 1.28 
Red Pine 0.49 8.56 
Mixed/Other Coniferous Forest 0.37 3.36 
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Oak 4.99 8.31 
Maple 0.00 0.60 
Mixed/Other Broad-leaved Deciduous 

Forest
2
 12.73 0.32 

Mixed Deciduous/Coniferous Forest
3
 1.40   

Open Water 2.51 8.42 
Emergent/Wet Meadow 4.69 13.46 
Lowland Shrub

1
 0.19   

Broad-leaved Deciduous Lowland Shrub 1.42 0.57 
Broad-leaved Evergreen Lowland Shrub 0.02 0.02 
Needle-leaved Lowland Shrub 0.02 0.00 
Broad-leaved Deciduous Forested 

Wetland 2.45 0.50 
Coniferous Forested Wetland 0.33 0.01 
Mixed Deciduous/Coniferous Forested 

Wetland 0.03 0.00 
Barren 1.06 0.39 
Shrubland 0.09 1.13 
  100.00 100.00 
1
Indicates a class that is further subdivided. The total is equal to the sum of the children so are not 

counted in the total.
 

2
More samples are available for this level 2 category (n=12502), but they do not provide full level 4 detail 

information so were not counted. This larger class includes broad leaf deciduous (4200), as well as paper 

birch, white ash, and central hardwoods/walnut.
 

3
This class was removed from the Wiscland2 classification scheme. 

 

3. Results for the Northern Footprint  

Results for the northern footprint were generated using a subset of training data from the 

database of samples falling with the Landsat footprint.  To estimate overall and per-class 

accuracy, a 100-fold cross-validation was conducted using 60% of the data for training 

(n=30,000) and 40% for testing (n=20,000).  For this pilot study, each level of classification was 

run independently of the others.  A significant implication of this processing approach is that the 

classifications are not forced to be nested within the more generalized class scheme.  For 

example, it is possible that a pixel is classified as “Burr Oak” at level 4 but as “Emergent/Wet 

Meadow” at level 2.  It is very important to note that in the proposed methodology, the 

classifications are conducted hierarchically from level 1 to 4 to prevent these inconsistencies.  

For the pilot study, both time constraints and an interest in identifying potential class confusion 

rendered it more advantageous to run each classification separately. 

 

3.1 Classification accuracy at each level 

In general, there is an inverse relationship between categorical detail and accuracy of a 

map.  As categorical detail increases (e.g. from Level 1 to Level 4), the accuracy of the 

classification would be expected to decrease.  Figure 5 illustrates the results of increasing the 

classification level on four accuracy statistics evaluated for the southern site.  The median value 

of the 100 trials is reported for each. The overall accuracy, precision, and recall decline at similar 

rates, with accuracy decreasing by ~5% moving from level 1 to level 2, and from level 2 to level 
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3.  The difference in accuracy between level 3 and level 4 is quite low, dropping only 1.3-1.5% 

for each metric.  Overall accuracy was 92.3% at level 1 and 80.2% for level 4 classifications in 

the northern site.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Another way to illustrate the relationship between accuracy and class detail is by plotting 

the median accuracy against the number of categories in the classification scheme (Figure 7).  

While this plot reiterates the relationship described above, it also reveals that the decline in 

accuracy occurs more rapidly when the category count is low.  While the accuracy declines by 

the same amount between the first three levels, only six categories are added between level 1 and 

2, whereas there is a difference of 15 classes between level 2 and 3.  Note that as there are only 4 

data points in Figure 6, a statistically significant conclusion is not possible.  Nevertheless, these 

results confirm the expected decline in accuracy as the categorical detail increases. 

 
 
 
 
 
 

 
Figure 5.  Accuracy assessments for four classification levels on the northern site 
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Figure 6. Changes in overall accuracy over number of classes.  The overall accuracy is calculated as the 

mean of 100 rounds of cross-validation procedure.  The data points on the X-axis correspond to the class 

numbers from level 1 (left) to level 4 (right). 
 

While the forgoing discussion informs the expected changes in accuracy as the 

categorical detail is increased, it does not reveal much information about the expected accuracy 

of individual categories, which is more relevant in the Wiscland-2 project.  To evaluate how well 

individual classes fair across different levels of classification, we also looked at additional 

variables such as class-specific accuracies, class-specific ability to recall, and class-specific 

precision of classification.  A confusion matrix, also known as a contingency table or an error 

matrix, is a specific table layout that allows visualization of the performance of a classification 

algorithm, typically a supervised learning algorithm.  Each column of the matrix represents the 

instances in a predicted class, while each row represents the instances in an actual class. The 

name stems from the fact that it makes it easy to see if the system is confusing two or more 

classes.  In Table X below we also provide an example of Level 1 classification confusion matrix 

as the first point of discussion. 
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Table X. Confusion matrix for Level 1 classification of the northern site. 

T
ru

th
 

Predicted 

  Urban Ag Grassland Forest Water Wetland Barren Shrub Sum 

Urban 0 1 0 5 0 0 0 0 6 

Ag 0 134 39 105 6 9 0 0 293 

Grassland 0 18 188 57 0 0 0 0 263 

Forest 0 13 6 15637 3 365 0 0 
1602

4 

Water 0 0 0 5 179 0 0 0 184 

Wetland 0 1 1 757 2 2458 0 0 3219 

Barren 0 0 0 4 0 0 2 0 6 

Shrub 0 0 0 5 0 0 0 0 5 

Sum 0 167 234 16575 190 2832 2 0 
2000

0 

 

In the example confusion matrix (Table X), the diagonal elements for each class indicate 

the correctly classified samples in the test set while the off-diagonal elements represent the class-

specific errors of omission (rows) or commission (columns).  Another way of summarizing the 

class-specific accuracies and errors is to look different error rates, which are summarized in 

Tables XI to XV below: 
 

Table XI. Per class accuracy statistics for level 1 classification of the northern site 

 

 
Table XII. Per class accuracy statistics for level 1 classification of the northern site 

 PREC RECALL F(1.0) AUC 
Urban

1
 0 0 0 0.5 

Agriculture
1
 0.8024 0.45734 0.58261 0.72783 

Grassland
1
 0.80342 0.71483 0.75654 0.85625 

Forest
1
 0.94341 0.97585 0.95935 0.86997 

Open Water 0.94211 0.97283 0.95722 0.98614 

 TP FP TN FN 

Urban
1
 0 0 19994 6 

Agriculture
1
 134 33 19674 159 

Grassland
1
 188 46 19691 75 

Forest
1
 15637 938 3038 387 

Open Water 179 11 19805 5 

Wetland
1
 2458 374 16407 761 

Barren 2 0 19994 4 

Shrubland 0 0 19995 5 
1
This class includes all training data that falls into any of its subcategories (for example, “Urban” 

includes “High Intensity”, “Low Intensity”, “Golf Course”, as well as urban that is not otherwise 

specified). 
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Wetland
1
 0.86794 0.76359 0.81243 0.87065 

Barren 1 0.33333 0.5 0.66667 

Shrubland 0 0 0 0.5 
1
This class includes all training data that falls into any of its subcategories (for example, “Urban” includes 

“High Intensity”, “Low Intensity”, “Golf Course”, as well as urban that is not otherwise specified). 
 

 Looking back at the Level 1 example confusion matrix and all the derived accuracy 

measures, the following conclusions can be derived.  First, the largest confusion in the Level 1 

classification scheme occurs between grassland and agriculture categories and the forest and 

lowland/wetland categories.  Given the ecological and phenological characteristics of these 

classes, this is not very surprising.  Note that since the agricultural category will be imported 

from the NASS CDL database, the first form of confusion is not very relevant.   

 The true/positive error rates and the other accuracy measures also reflect these findings.  

For example, the forest (category 4) and lowland (category 6) categories have higher commission 

(False positive) rates than omission errors, typically with each other.  This reflects the confusing 

nature of these two classes. 

 

Similar results for the level 2 through 4 categories are given in the following tables: 

 
Table XIII.  Per class accuracy statistics for level 2 classification of the northern site 

 PREC RECALL F(1.0) AUC 

Emergent/Wet Meadow 0.55556 0.2 0.29412 0.5999 

Lowland Shrub 0.68182 0.16854 0.27027 0.58409 

Forested Wetland 0.82757 0.7864 0.80646 0.87866 

Barren 1 0.11111 0.2 0.55556 

Shrubland 0 0 0 0.5 

Low Intensity Urban 0.5 1 0.66667 0.99997 

Cropland
1
 0.715 0.52381 0.60465 0.76046 

Grassland 0.64964 0.52976 0.58361 0.76367 

Hay 0.56962 0.43269 0.4918 0.71549 

Coniferous Forest 0.80809 0.71226 0.75715 0.84265 

Broad-leaved Deciduous Forest 0.90059 0.9472 0.92331 0.8677 

Open Water 0.96089 0.97727 0.96901 0.98846 
1
This class only includes any training data without any higher level of detail (for example, “Urban” only 

includes urban sites whose intensity was not otherwise specified). 
 

The level 2 statistics show high accuracy for the dominant land cover types (“Broad-leaved 

Deciduous Forest”, “Coniferous Forest”, “Forested Wetland”) while rare classes generally have 

high rates of omission (“Lowland shrub”, “Emergent/Wet Meadow”).  In each case, the rare 

classes are mostly mistakenly ascribed to one of the dominant classes.  For example, 10/25 

“Emergent/Wet Meadow” pixels were labeled (“Broad-leaved Deciduous Forest” and 6/25 as 

“Forested Wetland”.  While lowland confusion may need to be addressed through the addition of 

training data or spectral features, confusion between forested and lowland classes can be largely 

mitigated by integrating the hierarchical classification method (e.g. only allowing lowland pixels 

to be classified within level 2 lowland categories). 
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Table XIV.  Per class accuracy statistics for level 3 classification of the northern site 

 PREC RECALL F(1.0) AUC 
Jack Pine (JP) 0.75943 0.64789 0.69924 0.82133 

Red Pine (RP) 0.73371 0.71944 0.72651 0.84681 

White Pine (PW) 0.44 0.05446 0.09692 0.52687 

Fir Spruce (FS) 0.58824 0.08621 0.15038 0.54293 

Hemlock Hardwoods (H) 0.41667 0.09434 0.15385 0.54682 

Broad-leaved Deciduous Forest 0 0 0 0.5 

Aspen (A) 0.84608 0.93935 0.89028 0.84316 

Paper Birch (BW) 0.11111 0.0082 0.01527 0.5039 

Oak (O) 0.76285 0.59896 0.67104 0.79576 

Red Maple (MR) 0.76 0.27299 0.40169 0.63573 

Low Intensity Urban 0 0 0 0.5 

Northern Hardwoods (NH) 0.69677 0.47162 0.5625 0.73462 

Open Water 0.94054 0.97753 0.95868 0.98849 

Emergent/Wet Meadow 0.68421 0.61905 0.65 0.80937 

Broad-leaved Deciduous Lowland 

Shrub 0.7619 0.19512 0.31068 0.59744 

Broad-leaved Evergreen Lowland 

Shrub 1 0.15385 0.26667 0.57692 

Coniferous Forested Wetland 0.79604 0.81181 0.80384 0.89088 

Bottomland Hardwoods (BH) 1 0.125 0.22222 0.5625 

Swamp Hardwoods (SH) 0.725 0.51277 0.60069 0.75385 

Barren 0.83333 0.55556 0.66667 0.77775 

Shrubland 0.5 0.5 0.5 0.74997 

Corn 0.75862 0.43564 0.55346 0.71711 

All Other Crops 0.78667 0.71084 0.74684 0.85502 

Cranberries 1 0.88889 0.94118 0.94444 

Grassland 0.65868 0.75342 0.70288 0.87528 

Hay 0.50794 0.4 0.44755 0.69922 

 
Table XV.  Per class accuracy statistics for level 4 classification of the northern site 

 PREC RECALL F(1.0) AUC 

Jack Pine (PJ) 0.74011 0.61215 0.67008 0.80372 

Red Pine (PR) 0.72921 0.69598 0.71221 0.8347 

White Pine (PW) 0.4386 0.13089 0.20161 0.56464 

Fir Spruce (FS) 0.52632 0.09615 0.1626 0.54785 

Hemlock 0.5 0.13043 0.2069 0.56492 

Broad-leaved Deciduous Forest 0 0 0 0.49997 

Aspen (A) 0.83507 0.94705 0.88754 0.83564 

Paper Birch (BW) 0.71429 0.03704 0.07042 0.51847 

Oak (O) 0.64286 0.28125 0.3913 0.6405 

N. Pin Oak, Black Oak 0.33333 0.09091 0.14286 0.5454 

Low Intensity Urban 0 0 0 0.5 
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Red Oak 0.79737 0.60714 0.68938 0.80077 

Red Maple (MR) 0.68852 0.26752 0.38532 0.63279 

Sugar Maple 0.69811 0.47234 0.56345 0.73496 

White Ash 0 0 0 0.5 

Open Water 0.92347 0.98907 0.95515 0.99416 

Emergent/Wet Meadow 0.72222 0.40625 0.52 0.703 

Broad-leaved Deciduous Lowland 

Shrub 0.61905 0.19697 0.29885 0.59828 

Broad-leaved Evergreen Lowland 

Shrub 0.57143 0.23529 0.33333 0.61757 

Swamp Conifer (SC) 0.60889 0.5249 0.56379 0.76022 

White Cedar (CW) 0.74744 0.75015 0.7488 0.86363 

Black Spruce (SB) 0.65227 0.44543 0.52936 0.71855 

Silver Maple 1 0.16667 0.28571 0.58333 

Black Ash 0.77863 0.57955 0.6645 0.78754 

Barren 0 0 0 0.5 

Shrubland 0 0 0 0.5 

Corn 0.78704 0.45213 0.57432 0.72548 

All Other Crops 0.9 0.71053 0.79412 0.85511 

Cranberries 0.7 0.63636 0.66667 0.81811 

Grassland 0.63842 0.69325 0.66471 0.84501 

Hay 0.62857 0.54321 0.58278 0.77095 

Coniferous Forest 0 0 0 0.5 

 

 As shown in the level 3 and 4 results, some of the forest categories, which are dominant 

in this footprint and important for the Wiscland-2 project, have high omission rates (such as the 

“Oak” classes, “Paper Birch”, and “Spruce”).  Again, the analysis of the landscape composition 

from Section 2.4 indicates that these are rarer classes which are inherently more difficult to 

detect.  More dominant classes and more distinct classes, such as “Aspen” and “Pine” classes, 

are classified with very high accuracy.  A large number of the omissions for each class are 

miscategorized as aspen.  This indicates that the overrepresentation of “Aspen” sites in the 

training sample may be amplifying the class size in these results and higher accuracies may be 

achieved if the “Aspen” sample is reduced. 
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3.2 Map results 

The final set of results concern the spatial patterns of classification outcomes.  There are 

four 1.2 km b 1.2 km areas being shown in Figure 7.  These refer to different levels of 

classification, Wiscland-1, and NLCD results. 

The maps were produced by mapping each data point to a class label based on the SVM 

model developing during the training step.  As a result, each pixel is associated with one of the 

class labels for each classification level 1 through 4.  To reduce noise in the map, a post-

processing procedure was applied to reclassify spurious pixels.  Assuming some contiguity of the 

landscape, an eight-neighbor window was applied to all pixels and any pixel not sharing the 

same class label with at least four neighbors were filled.  The new label was also derived from a 

clump operator where similar classified areas were clumped together according to a three by 

three pixel window.  In the future image segmentation will be utilized as a post-processing 

method of eliminating some of this ‘speckle’ associated with the classification process.  

Segmentation harnesses the spectral similarity of surrounding pixels to identify objects in the 

imagery.  This is particularly important for land cover, where segmentation can delineate natural 

boundaries that can then be assigned a uniform land cover when combined with the classification 

results.  At this point, current tests of the segmentation process have not provided a desirable 

output, either over- or under-simplifying the landscape.  Figure 8 gives an example of some of 

the outputs that were creating during the segmentation testing.  However, it is likely that through 

adjustments to the input data or algorithm selection, image segmentation will provide a valuable 

method to refine the pixel-based results. 
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Figure 7.  Results of different levels of classification compared to the Wiscland1 and NLCD for the northern site.  

Wiscland1 (upper left), NLCD (upper right), Level 1 classification (lower left), and level 4 classification (lower left). 
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Figure 8.  Trial segmentation results for the north site.  1 meter resolution NAIP image (upper left), level 

4 classification result (upper right), and segmented post-processed classification result (lower left). 

 

4. Results for the southern footprint 

 

 Results for the southern footprint were generated using the full database of samples 

falling with the Landsat footprint.  To estimate overall and per-class accuracy, a cross-validation 

was conducted using approximately 66% of the data for training (n=80,000) and 33% for testing 

(n=43341).  Similarly to the northern study site, each level 1-4 classification was run 

independently of the others.   

  

4.1 Classification accuracy at each level 

 Overall, it is noteworthy that the overall classification accuracy achieved at each level is 

lower than those of the northern site. Figure 9 illustrates the results of increasing the number of 

classes on the four accuracy statistics evaluated for the southern site.  While AUC remained 
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fairly stable across the various classifications, PREC, RECALL, and overall accuracy declined 

from 81.6% at level 1 to 65.7% at level 4.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 provides more insight into some of the potential reasons for the relatively lower 

accuracy. The range and number of classes present in the southern pilot site are much broader 

than that of the northern site: the level 4 classification includes 53 categories as opposed to 35. 

Like the northern site, the changes in the various accuracy statistics between levels 3 and 4 were 

very minor as the cost of adding more classes is decreased when there are already numerous 

categories.  A more dramatic shift in accuracy is evident when comparing level 2 (19 classes 

with 73.7% accuracy) vs. level 4 (53 classes with 65.7% accuracy).  

Overall accuracy is helpful in getting a general overview of the map output, but it is also 

important to evaluate the per-class accuracy metrics.  Lower than desired accuracy on a class 

may be associated with a lack of training data for that particular class (as discussed above), high 

amounts of interclass variability, or a variety of other confounding factors.  Per-class accuracy 

metrics can also help evaluate whether it is feasible to attempt classification on a class.  Tables 

XVI through XX show the per-class results for classification levels 1 through 4 for the southern 

site.  PREC and RECALL for the level 1 classification was lowest on the class with the fewest 

training sites (barren), and tended to be higher on classes that had either the most training sites 

available (agriculture, forest, and grassland classes) or classes that have a unique, easy-to-

identify signature (“Water”).  AUC for all of the classes at level one was over 0.5 (the threshold 

 
Figure 9.  Accuracy assessments for four classification levels on the southern site 
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for an ‘ok’ classification), although “Barren” and “Shrubland” classes were close to 0.5 while 

“Forest” and “Wetland” were over 0.9.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Evaluating the confusion matrix (Table XVII) can also lead to insight regarding 

confusion between classes.  At level 1, confusion between the “Urban” and “Barren” classes is 

understandable given that both of these areas have sparse vegetation present.  “Shrubland” at 

level 1 shows confusion between several different classes (grassland, forest, and wetland classes) 

which may be indicative of a spectral similarities between these various classes, high variability 

within the “Shrubland” training data itself, or a response to the lower number of available 

training data for this class, for example. 

 
Table XVI.  Per class accuracy statistics for level 1 classification of the southern site 

 PREC RECALL F(1.0) AUC 
Urban

1
 0.67326 0.59937 0.63417 0.79185 

Agriculture
1
 0.8232 0.82569 0.82444 0.88525 

Grassland
1
 0.75888 0.78586 0.77213 0.84335 

Forest
1
 0.87368 0.89004 0.88179 0.92399 

Open Water 0.88475 0.77875 0.82838 0.88787 
Wetland

1
 0.8536 0.84447 0.84901 0.90978 

Barren 0.625 0.16667 0.26316 0.58326 

 
Figure 10.  Overall map accuracy compared to number of classes for the southern 

site. 
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Shrubland 0.8 0.04598 0.08696 0.52297 
1
This class includes all training data that falls into any of its subcategories (for example, “Urban” includes 

“High Intensity”, “Low Intensity”, “Golf Course”, as well as urban that is not otherwise specified). 
 
Table XVII.  Confusion matrix for level 1 classification of the southern site. 

T
ru

th
 

Predicted 

 Urban Ag Grassland Forest Water Wetland Barren Shrub Sum 

Urban 1327 134 491 233 4 20 5 0 2214 

Ag 133 8493 1424 151 1 84 0 0 10286 

Grassland 316 1444 9681 544 8 325 1 0 12319 

Forest 125 158 625 9503 6 259 0 1 10677 

Water 1 10 52 19 975 195 0 0 1252 

Wetland 30 72 407 373 106 5370 0 1 6359 

Barren 32 2 8 4 2 2 10 0 60 

Shrub 7 4 69 50 0 36 0 8 174 

Sum 1971 10317 12757 10877 1022 6291 16 10 43341 

 

Per-class accuracy at higher levels of classification covers a large range, from 93.1% for 

winter wheat to 0% PREC and RECALL for several classes at level 4.  It is important to note that 

the classification output shown in these tables utilized all of the training data available, including 

training sites that did not have a specified level 4 classification (forest areas that did not have a 

species designated, for example).  The impact of including all of the training data vs. only level 4 

training data is unclear, but future processing may only include the refined ‘ideal’ training sites.  

For example, PREC, RECALL, and AUC for the general “Wetland” category in level 4 were 

relatively low while “Cattail”, a specific wetland category had higher PREC, RECALL, and 

AUC.  It may be the refining the training data to include only areas that are specified at/near 

level 4 would increase the accuracy of the classification itself. 

 
Table XVIII.  Per class accuracy statistics for level 2 classification of the southern site 

 PREC RECALL F(1.0) AUC 

Urban
1
 0.62714 0.62714 0.62714 0.8046 

Forest
1
 0.5783 0.38068 0.45913 0.68197 

Coniferous Forest 0.84919 0.82637 0.83762 0.90899 
Broad-leaved Deciduous Forest 0.71 0.81595 0.75929 0.88194 
Open Water 0.86706 0.81912 0.8424 0.90767 
Wetland

1
 0.64773 0.36774 0.46914 0.68315 

Emergent/Wet Meadow  0.79305 0.85705 0.82381 0.91573 
Lowland Shrub 0.65351 0.27644 0.38853 0.6373 
Forested Wetland 0.68073 0.63636 0.6578 0.81406 
Barren 0.84211 0.26667 0.40506 0.6333 
Shrubland 0.72 0.09836 0.17308 0.5491 
High Intensity Urban 0.68966 0.57143 0.625 0.78561 
Low Intensity Urban 0.47561 0.19697 0.27857 0.59799 
Golf Course 0 0 0 0.49993 
Cropland

1
 0.79614 0.86733 0.83021 0.8994 

Grassland
1
 0.65025 0.18723 0.29075 0.59278 
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Idle Grass 0.72378 0.76622 0.7444 0.86212 
Pasture 0.65158 0.67308 0.66215 0.80946 
Hay 0.88571 0.21934 0.35161 0.60953 
1
This class only includes any training data without any higher level of detail (for example, “Urban” only 

includes urban sites whose intensity was not otherwise specified). 
 
Table XIX.  Per class accuracy statistics for level 3 classification of the southern site 

 PREC RECALL F(1.0) AUC 

Urban
1
 0.6105 0.62371 0.61703 0.80206 

Grassland
1
 0.58657 0.2368 0.3374 0.61703 

Idle Grass
1
 0.61657 0.65153 0.63357 0.80525 

Warm-season Grass 0.46681 0.45349 0.46005 0.72097 
Cool-season Grass 0.61662 0.42125 0.50054 0.70895 
Pasture 0.62594 0.70437 0.66284 0.81955 
Hay 0.78947 0.39788 0.5291 0.69847 
Forest

1
 0.56314 0.44205 0.4953 0.71052 

Coniferous Forest 0.47603 0.38292 0.42443 0.68968 
Jack Pine (PJ) 0.78395 0.58796 0.67196 0.79358 
Red Pine (PR) 0.77739 0.84119 0.80803 0.91682 
High Intensity Urban 0.625 0.45455 0.52632 0.72717 
White Pine (PW) 0.7 0.54545 0.61314 0.77147 
Broad-leaved Deciduous Forest 0.66974 0.82751 0.74031 0.89377 
Aspen (A) 0.65257 0.53465 0.58776 0.76599 
Paper Birch (BW) 0 0 0 0.5 
Oak (O) 0.69186 0.71687 0.70414 0.85339 
Red Maple (MR) 0.64286 0.20455 0.31034 0.60221 
Northern Hardwoods (NH) 0.75676 0.41176 0.53333 0.70578 
Central Hardwoods 0.66667 0.18182 0.28571 0.59089 
Open Water 0.86187 0.80339 0.8316 0.89971 
Low Intensity Urban 0.47475 0.2156 0.29653 0.6072 
Wetland

1
 0.62814 0.36982 0.46555 0.68405 

Emergent/Wet Meadow 0.59142 0.66526 0.62617 0.81938 
Floating Aquatic Herbaceous 

Vegetation 0 0 0 0.49999 
Reed canary (lowland and upland) 0.5625 0.28125 0.375 0.64054 
Phragmites 0.71642 0.57831 0.64 0.78894 
Cattails 0.82191 0.86931 0.84495 0.93036 
Lowland Shrub 0.5259 0.32754 0.40367 0.66239 
Broad-leaved Deciduous Lowland 

Shrub 0.73684 0.56 0.63636 0.77983 
Broad-leaved Evergreen Lowland 

Shrub 0 0 0 0.5 
Forested Wetland 0.48601 0.43311 0.45803 0.7142 
Golf Course 0.44444 0.22222 0.2963 0.61105 
Broad-leaved Deciduous Forested 0.44681 0.24138 0.31343 0.62039 
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Wetland 

Coniferous Forested Wetland 0.85067 0.85067 0.85067 0.92468 
Bottomland Hardwoods 0.76023 0.63107 0.68966 0.81506 
Swamp Hardwoods 0.72727 0.57143 0.64 0.78568 
Barren 0.70833 0.26984 0.3908 0.63484 
Shrubland 0.50909 0.1573 0.24034 0.57834 
Cropland

1
 0.66167 0.77493 0.71383 0.8522 

Corn 0.72216 0.59398 0.65183 0.79061 
Soybeans 0.7113 0.28053 0.40237 0.63946 
Winter Wheat 0.8125 0.41935 0.55319 0.70961 
All other crops 0.80159 0.56583 0.66338 0.78174 
1
This class only includes any training data without any higher level of detail (for example, “Urban” only 

includes urban sites whose intensity was not otherwise specified). 

 
Table XX.  Per class accuracy statistics for level 4 classification of the southern site 

 PREC RECALL F(1.0) AUC 

Urban
1
 0.61136 0.61257 0.61196 0.79676 

Grassland
1
 0.61255 0.2338 0.33843 0.61567 

Idle Grass
1
 0.61215 0.65225 0.63157 0.80565 

Warm-season Grass 0.46776 0.45435 0.46096 0.72143 
Cool-season Grass 0.6015 0.45113 0.51557 0.72371 
Pasture 0.63859 0.7112 0.67294 0.82431 
Hay 0.79082 0.38272 0.51581 0.69088 
Forest

1
 0.53899 0.47947 0.5075 0.72753 

Coniferous 0.49798 0.31538 0.38619 0.65625 
Jack Pine (PJ) 0.62673 0.66341 0.64455 0.83077 
Red Pine (PR) 0.76354 0.85168 0.8052 0.92174 
High Intensity Urban 0.69231 0.34615 0.46154 0.67303 
White Pine (PW) 0.7106 0.496 0.58422 0.74682 
Fir Spruce (FS) 0 0 0 0.49998 
Broad-leaved Deciduous Forest 0.68174 0.81913 0.74415 0.89055 
Aspen (A) 0.65416 0.57277 0.61076 0.78488 
Paper Birch (BW) 0 0 0 0.5 
Oak (O) 0.75309 0.51261 0.61 0.75607 
N. Pin Oak, Black Oak 0.72107 0.64456 0.68067 0.82119 
Red Oak 0.6085 0.58616 0.59712 0.78995 
White Oak 0.59756 0.26064 0.36296 0.62994 
Burr Oak 0.75 0.10345 0.18182 0.55171 
Low Intensity Urban 0.36522 0.23204 0.28378 0.61518 
Red Maple (MR) 0.54545 0.31579 0.4 0.65778 
Sugar Maple 0.78571 0.45833 0.57895 0.7291 
White Ash 0.42857 0.15789 0.23077 0.5789 
Walnut 0.33333 0.04 0.07143 0.51998 
Open Water 0.84137 0.82518 0.8332 0.91029 
Wetland

1
 0.53769 0.34628 0.42126 0.67207 
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Emergent/Wet Meadow 0.60604 0.6887 0.64473 0.83129 
Floating Aquatic Herbaceous 

Vegetation 0 0 0 0.5 
Reed canary (lowland and upland) 0.8 0.21053 0.33333 0.60524 
Phragmites 0.7377 0.56962 0.64286 0.78463 
Golf Course 0.5 0.38462 0.43478 0.69225 
Cattails 0.84623 0.86643 0.85621 0.92947 
Lowland shrub 0.53333 0.32458 0.40356 0.6609 
Broad-leaved Deciduous Lowland 

Shrub 0.80303 0.65432 0.72109 0.82701 
Broad-leaved Evergreen Lowland 

Shrub 1 0.25 0.4 0.625 
Forested Wetland 0.53488 0.44421 0.48535 0.72 
Broad-leaved Deciduous Forested 

Wetland 0.48649 0.22222 0.30508 0.61089 
Coniferous Forested Wetland 0 0 0 0.5 
Swamp Conifer Forested Wetland 0.4 0.16667 0.23529 0.5833 
Black Spruce (SB) Forested Wetland 0.8509 0.90685 0.87798 0.95275 
Green Ash Bottomland Hardwood 0.70779 0.68987 0.69872 0.84442 
Cropland

1
 0.65603 0.7839 0.71429 0.8562 

Silver Maple Bottomland Hardwood 0.86538 0.69231 0.76923 0.84607 
Black Ash Swamp Hardwoods (SH) 0.7 0.53846 0.6087 0.7692 
Barren 0.66667 0.27586 0.39024 0.63784 
Shrubland 0.48148 0.14286 0.22034 0.5711 
Corn 0.7086 0.59465 0.64665 0.79065 
Soybeans 0.65759 0.28027 0.39302 0.6391 
Winter Wheat 0.93103 0.41538 0.57447 0.70767 
All Other Crops 0.84086 0.5138 0.63785 0.75603 
1
This class only includes any training data without any higher level of detail (for example, “Urban” only 

includes urban sites whose intensity was not otherwise specified). 
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4.2 Map results 
Maps were produced in the same way as described above.  An example of the spatial 

distribution of the various classification levels for the southern site is shown in Figure 11.   

  

 
Figure 11.  Results of different levels of classification compared to the Wiscland1 and NLCD for the southern 

site.  Wiscland1 (upper left), NLCD (upper right), Level 1 classification (lower left), and level 4 classification 

(lower left). 



36 

5. Overall conclusions 

 

The overall map accuracy achieved for this pilot ranged from 92.9 to 80.2% for the northern site 

and 81.6 to 65.7% for the southern site for the level 1 through 4 classification schemes.  As 

would be expected, as the number of classes increased (through a more complex classification 

scheme) the resulting map accuracy decreased.  Some of this decrease may be mitigated through 

refinement of the reference data, collection of additional reference points to supplement low-

sample size classes, and forced ‘nesting’ of the higher level classes within the level 1 class areas.  

The higher accuracy achieved in the northern site can largely be attributed to: 1) the fewer 

number of land cover categories present, and 2) the large amount of tree species data contained 

in the database from sources such as FIA, CFI, and recon.   

Both pilot sites, however, had classes that were rare and/or lacked a sufficient number of 

reference points.  In particular, several tree species were poorly classified in the north: 

 

1) Hemlock 

2) Spruce 

3) Paper birch 

4) Pin/Black oak 

5) Silver maple 

 

However, given that these species also only constitute a small percentage of the landscape, and 

the accuracies of the northern site are quite high at the species level given the current inputs and 

training data, additional efforts at data acquisition may be more efficiently targeted toward the 

dominant species in the southern portion of the state.  Namely, several wetland categories were 

not well captured, including: 

 

1) Swamp Conifer 

2) Broad-leaf deciduous forested wetland 

3) Broad-leaf evergreen lowland shrub 

4) Reed Canary 

 

In addition, while “Grassland” was reasonably classified in the level 1 classification, 

distinguishing cool- from warm-season grasses is problematic.  Here, the issue does not 

necessarily appear to be related to the training sample however as the sample proportion mirrors 

that of the landscape (~12% in each) and the count is sufficient (>1000 for each).  Because the 

confusion is predominantly with agricultural lands, the integration of cropland information from 

CDL should increase accuracy, as will the implementation of a more hierarchical classification 

procedure. 

Relatedly, classes that are structurally and/or spectrally similar are often committed to the 

more common land cover type, resulting in lower accuracy for those rare and variable classes. 

One way to mitigate this issue is to cut back the samples in classes that are over-classified in the 

results, such as “Aspen” (north) and “Agriculture” (south).  A finalized classification scheme 

will also aid in developing a more certain evaluation of the per-class reference points available 

and a final determination as to whether/where additional reference data collection is needed. 

 The use of existing datasets for reference data collection allows for minimal field 

collection, but considerations related to data standardization and spatial coverage will continue to 



37 
 

be reviewed.  Perhaps the most significant concern is the level of detail provided by each source, 

as many do not have enough information to assign the sample to a level 4 category.  For the pilot 

study, all data were included in the training, whether the sample had up to a level 4 category or 

not.  This was advantageous for many classes where the sample size would otherwise be low.  

However, because of the considerable variability between classification schemes of the training 

data sources and Wiscland-2, utilizing these sample points may introduce a potentially 

significant amount of noise into the training data.  Going forward, it appears to be advantageous 

to eliminate these sites from the classification procedure and obtain additional samples with the 

requisite level of detail to ensure a high-quality dataset that conforms to the class definitions 

developed for Wiscland-2. 

Due to time and processing constraints, several processes and methods that are intended 

for use in the final product were not utilized for this pilot study.  The differences between the 

proposed methodology and pilot methodology are as follows: 

 

1) Training database. Only samples able to be labeled with a level 4 class will be used, 

rather than the full available set.  The database will also be augmented where 

necessary. 

2) Feature selection. A formal feature selection process will be conducted to assess the 

relative importance of each input feature and additional spectral and/or ancillary data 

will be added if accuracy gains are achieved. 

3) Classification algorithm. The classifications will be performed using the Support 

Vector Machine (SVM) algorithm rather than C4.5 decision tree algorithm.   

4) Agricultural classes. The NASS CDL and crop rotations data will be used to identify 

agricultural cropland rather than the image classification. 

5) Hierarchical classification scheme. The classification will be run hierarchically, 

rather than separately, so that each pixel will fall into the hierarchical classification 

scheme (level 1-4). With each subsequent classification, only subcategories will be 

classified so the labels are fully nested. 

6) Image segmentation. An image segmentation algorithm will be used to serving 

multiple purposes: a) to improve map accuracy by identifying natural features more 

accurately than spectral data alone, b) to smooth out spurious pixels for a more 

refined cartographic produce, and c) to implement a minimum mapping unit of 2 

acres. 

7) Dataset delivery. Map data will be delivered in a format similar to that of Wiscland-

1, with the information relevant to each level of classification contained within a 

single file, rather than four separate files. 

 

 Overall, the viability of using existing datasets to create an updated land cover map for 

Wisconsin is quite feasible.  Several concerns have been identified regarding the spatial 

distribution of the data sets, the number of samples per desired class, and the level of detail 

available across the various data sets need to be resolved in the future refinements of the process.  

However, the overall accuracies and many of the per-class accuracy outputs achieved with the 

current processes are reasonably high, especially given the stage of the project.  The 

methodology development is an iterative process and the methodology for the pilot deviated 

from the proposed methodology for Phase II in the ways outlined above.  The additional of CDL 
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data and image segmentation, nesting of the classes, and the use of the SVM classification 

algorithm are all anticipated to have significantly positive impact on the final product. 
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Appendix A 

 
Draft Wiscland-2 classification scheme 

Wiscland Proposed # Description 

100 1 URBAN/DEVELOPED 

101 1.1 High Intensity 

104 1.2 Low Intensity 

105 1.3 Golf course 

110 2 AGRICULTURE 

  2.1 Cropland 

  2.1.1 Corn 

  2.1.2 Soybeans 

  2.1.3 Alfalfa 

  2.1.4 Winter Wheat 

  2.1.5 Potatoes 

  2.1.6 All other Crops 

  2.1.7 Cranberries 

150 3 GRASSLAND 

PROPOSED 3.1 Idle grass (unmanaged) 

PROPOSED 3.1.1 warm 

PROPOSED 3.1.2 cool 

PROPOSED 3.x Pasture (managed, forage) 

PROPOSED 3.x Hay (managed, forage) 

160 4 FOREST 

161 4.1 Coniferous 

162 4.1.1 Jack Pine (PJ) 

163 4.1.2 Red Pine (PR) 

PROPOSED 4.1.3 White Pine (PW) 

166 4.1.4 Fir Spruce (FS) 

PROPOSED 4.1.6 Hemlock Hardwoods (H) 

PROPOSED 4.1.6.1      Hemlock  

175 4.2 Broad-leaved Deciduous 

176 4.2.1 Aspen (A) 

PROPOSED 4.2.2 Paper Birch (BW) 

177 4.2.3 Oak (O) 

COMBO 4.2.3.1      N. Pin Oak, Black Oak 

180 4.2.3.2      Red Oak 

PROPOSED 4.2.3.3      White Oak 

PROPOSED 4.2.3.4      Burr Oak 

PROPOSED 4.2.4 Red Maple (MR) 

PROPOSED 4.2.5 Northern Hardwoods (NH) 
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185 4.2.5.1      Sugar Maple 

PROPOSED 4.2.5.2      White Ash 

PROPOSED 4.2.6 Central Hardwoods 

PROPOSED 4.2.6.1      Walnut 

200 5 OPEN WATER 

210 6 WETLAND 

211 6.1 Emergent/Wet Meadow 

212 6.1.1 Floating Aquatic Herbaceous Vegetation 

PROPOSED 6.1.2 Reed canary (lowland & upland) 

PROPOSED 6.1.3 Phragmites 

PROPOSED 6.1.4 Cattails 

PROPOSED 6.1.5 Buckthorn/honeysuckle (lowland) 

217 6.2 Lowland Shrub 

218 6.2.1 Broad-leaved Deciduous 

219 6.2.2 Broad-leaved Evergreen 

220 6.2.3 Needle-leaved 

222 6.3 Forested 

223 6.3.1 Broad-leaved Deciduous 

229 6.3.2 Coniferous 

PROPOSED ? Swamp Conifer (SC) 

PROPOSED ? White Cedar © 

PROPOSED ? Black Spruce (SB) 

PROPOSED ? Tamarack (T) 

234 6.3.4 Mixed Deciduous/Coniferous 

PROPOSED 6.3.5 Bottomland Hardwoods (BH) 

PROPOSED 6.3.5.1      Green Ash 

PROPOSED 6.3.5.2      Silver Maple 

PROPOSED 6.3.6 Swamp Hardwoods (SH) 

PROPOSED 6.3.6.1      Black Ash 

240 7 BARREN 

250 8 SHRUBLAND 

PROPOSED 8.1 Buckthorn/honeysuckle (upland) 

 

 


