Wisconsin County Coordinate Systems: WLIA Task Force Report on the Issues

WSLS Annual Institute January 27, 2005

Ted Koch - State Cartographer
Diann Danielsen - LIO Manager, Dane County
Jerry Mahun - Civil \& Environmental Engineering Technology, MATC
Al Vonderohe - Dept. of Civil \& Environmental Engineering, UW-Madison

Today's Presentation

Diann - WCCS: Why \& What + Concerns

Jerry - Wisconsin Coordinate Systems: The Technical Foundation

Al - WCCS: Emerging Issues and Solutions

Ted - Summary: Where are we headed?

*) Mission:

년 Analyze and document the foundations of the WCCS
${ }_{4}$ Investigate, analyze and document software implementations of WCCS
눈 Investigate the redesign of the WCCS
6 Register WCCS with standards setting organization
눈 Document WCCS proceedings
6 Develop user-focused documentation
, Evaluate and make recommendations regarding statutory changes
6 Present TF recommendations to WLIA Board

- Brett Budrow St Croix County
- Tom Bushy ESRI
- Diann Danielsen Dane County
* John Ellingson Jackson County
- Bob Gurda State Cartographer's Office (ended 4/30/04)
- Pat Ford Brown County
- Gene Hafermann WI Dept of Transportation
- David Hart UW-Madison Sea Grant
- Ted Koch State Cartographer, Chair
- Mike Koutnik ESRI
- John Laedlein WI Dept of Natural Resources
- Tim Lehmann Buffalo County
- Gerald Mahun Madison Area Technical College
- David Moyer, Acting State Advisor Nat'l Geodetic Survey
- Kent Pena USDA-Natural Resources Conservation Service
- Karl Sandsness yres Associates
- Glen Schaefer WI Dept of Transportation
- Jerry Sullivan WI Dept of Administration
- Peter Thum GeoAnalytics. Inc.
- Al Vonderohe UW-Madison, Dep't of Civil \& Environmental Engineering
- Jay Yearwood City of Appleton
* AJ Wortley State Cartographer's Office

Task Force Accomplishments

- 9 meetings in the past 12 months
- Documents:
: Equations \& Parameters for WI Coordinate Systems, (Jerry Mahun)
四 WCCS Test Point Data
n Products matrix
: Proposal to redesign the WCCS
- WTM parameters registered with ESPG
- Presenting TF work and conclusions to the professional community
- Local coordinate systems and the WCCS: Why and What + Concerns
m Diann Danielsen

Why a Local Coordinate System?

Regional coordinate systems require ground-to-grid conversions to relate field surveyed coordinates to projected mapping coordinates
e Easy for staff to misapply or forget conversions

- Huge conversion effort for historic records
m Property maps have tens of thousands of ground-level distances on them. Too difficult to convert to map projections for GIS.
a Design drawings have tens of thousands of map projection distances on them. Too difficult to convert to ground distances for construction stakeout.

Three Surfaces Distances on property maps and construction stakeout Earth's Surface are measured here.

GIS spatial databases and design drawings are developed here.

Wisconsin Local Coordinate Systems

- Old WisDOT county coordinate system used an average elevation and scale factor for each county to ease conversion between grid and ground values
- Typical project-based approach; does not preserve a precise mathematical relationship with other coordinate systems.
- Several Wisconsin counties began defining and adopting coordinate systems for local use
- WisDOT desired a unified set of county coordinate systems for the agency's large-scale mapping and roadway design activities that would be:
- Standardized and mathematically relatable to other systems
- Incorporate existing local county coordinate systems

Solution....

- Develop map projections that are even more localized than state plane coordinate projections
- No significant differences between ground distances and map projection distances
- Ground distances can be used directly in spatial databases and grid (design) distances can be used directly for stakeout.

Wisconsin County Coordinate System

- Fairview Industries was hired by WisDOT in 1993 to develop a consistent statewide set of county based coordinate systems
- This design raised the ellipsoid surface to near ground level to minimize ground and grid differences

Wisconsin County Coordinate System

* 59 separate map projections (Lambert and Transverse Mercator)

낭 72 counties - some share a projection

Use and Adoption of the WCCS

- Not officially adopted in statute (no current statutory home for coordinate system definition outside of a platting context)
- Chapter 236 updates were crafted to recognize and allow the use of WCCS for platting purposes
- WLIP \& Task Force surveys indicate the WCCS has been adopted for use in $3 / 4$'s of Wisconsin counties

Use and Adoption of the WCCS

- WCCS has become a key component of the WLIP, recognized as a voluntary or de facto standard, and supported by a number of educational resources
a Statewide educational rollout in mid-1990's
${ }^{3}$ Hardcopy and online resources

Emerging Issues

- Multiple county coordinate systems
- Jackson County Official Coordinate System (county adopted)
- Jackson County Coordinate System (WisDOT developed)
* Different naming conventions
- Badger County Coordinate System; Badger County Geodetic Grid; Badger County Coordinate Grid; WCCS - Badger County; WCCS for Badger County; WCCS - Badger Zone
* Questionable use of datums
- WCCS designed specifically for use with NAD83(1991)
- WisDOT plats being filed using WCCS - Badger Zone; NAD83(1997)
* Variations create confusion when communicating and trying to convert data

Other Concerns

- Vendor Implementation

훈 Difficult because of the WCCS's unconventional design; mathematically correct, but less understood
bex Vendor implementation methodology differs, resulting in different coordinate values for the same feature

- Lack of Formal Registration
, : Some local systems adopted in ordinance; most are not
a Not registered with European Petroleum Survey Group/EPSG
- Aids consistent interpretation and implementation
- Lack of State Custodian/Oversight
tan systems or other spatial reference parameters (land and water datums, geoid models, ellipsoids, etc)

Defining Concepts Coordinate System Development
 Two-Dimensional Rectangular Coordinate Systems Formal Coordinate Systems in Wisconsin

Jerry Mahun
Madison Area Technical College

Defining Concepts

To develop a coordinate system:

- Relate non mathematical three dimensional earth to a mathematical 3D model.
- Project 3D model into a 2D plane
- Define coordinate axes and units

Defining Concepts

Earth Models

Earth Physical Earth; Terrain
Entity on which measurements are made.

Geoid An equipotential surface
A surface on which gravity and centrifugal forces are balanced.

Directions of gravity

Earth Models

Ellipsoid
The ellipsoid is a mathematical surface used to approximate the geoid.

Ellipse Parameters

$a=$ semimajor axis
$b=$ semiminor axis
$f=$ flattening
$e=$ eccentricity
$f=\frac{a-b}{b}$
$e=\frac{\sqrt{a^{2}-b^{2}}}{a}$

Ellipsoid

Typical Ellipsoids

Ellipsoid Clarke 1866 GRS 80
WGS 84
a (meters)
6,378,206.4*
6,378,137.0*
6,378,137.0*
b (meters)
6,356,583.8*
$6,356,752.31414$
6,356,752.31424

1/f
1/294.9786982
1/298.257222101*
1/298.257223563*
*defining parameters

Fitting an Ellipsoid
Regional Fitting

Fitting an Ellipsoid
Global Fitting

Fitting an Ellipsoid

Fitting an Ellipsoid

H: orthometric height
N : geoid height
$(+)$ if geoid is above ellipsoid
(-) if geoid is below ellipsoid
h : ellipsoidal (geodetic) height

$$
h=H+N
$$

Datum

datum

Any quantity or set of such quantities that may serve as a reference or basis for calculations of other quantities.
datum, geodetic
A set of constants specifying the coordinate system used for geodetic control, i.e., for calculating coordinates of points on the Earth.

A datum consists of the ellipsoid and its geoid fit.

Datum

Datum	NAD 27	NAD 83
Ellipsoid	Clarke 1866	GRS 80
Fit to	North America	World
Criteria	Origin at Meades Ranch, KS; no geoid separation. Azimuth to Waldo fixed.	Ellipsoid centroid coincides with earth's mass center. Semiminor axis set parallel with polar axis
Approx Number of Control Stations	25,000	272,000

NAD 83 has been adjusted three times in Wis:
NAD 83 (1986) - Original national adjustment
NAD 83 (1991) - WI HARN incorporated NAD 83 (1997) - Re-observed GPS stations

Coordinate System Development

Three-Dimensional Reference System
Spherical Coordinates

Coordinate System Development

Three-Dimensional Reference System
 Spherical Coordinates

Coordinate System Development

Three-Dimensional Reference System
Geodetic Coordinates

Three dimensional position of a point is expressed by:
ϕ geodetic latitude
λ geodetic longitude

Coordinate System Development

Three-Dimensional Reference System

Rectangular Coordinates

Earth Centered Earth Fixed (ECEF)
Rectangular Coordinate System
Three dimensional position of a point is expressed by x, y, and z

Two-Dimensional Rectangular Coordinate Systems

Building a Two-Dimensional Coordinate System

Projecting a 3-D surface into a 2-D surface causes distortions:
Linear and Angular

"Orange Peel" Map of the World

Two-Dimensional Rectangular Coordinate Systems

Building a Two-Dimensional Coordinate System

Length distortion occurs when projecting from:

- ground (Earth) to ellipsoid
- ellipsoid to projection surface

Two-Dimensional Rectangular Coordinate Systems

Building a Two-Dimensional Coordinate System

Direction distortion occurs because true north lines converge to a point (North Pole)

Two-Dimensional Rectangular Coordinate Systems

"Developable" Surface and Projections
A developable surface along with fit criteria becomes a projection that can be used to define a coordinate system.

Three commonly used surfaces:
Plane
Cylinder
Cone
The developable surface is placed tangent or secant to the ellipsoid.
Points are projected from the ellipsoid to the developable surface.
The surface is rolled out flat without "tearing" the surface.
Because a projection is mathematical, distortions introduced can be compensated for mathematically.

Selecting the type, size, and orientation of the projection allows us to control "maximum" distortions.

Two-Dimensional Rectangular Coordinate Systems

Developable Surface
 Plane Projection

Tangent plane

Scale distortions

Two-Dimensional Rectangular Coordinate Systems

Developable Surface

Cylindrical Projection

Transverse cylinder

Scale distortions

Coordinate system

Two-Dimensional Rectangular Coordinate Systems

Developable Surface

Conic Projection

Two-Dimensional Rectangular Coordinate Systems

Transverse Mercator Cylindrical Projection

Two-Dimensional Rectangular Coordinate Systems

Transverse Mercator Cylindrical Projection

Computing Zone/System Constants

Design parameters are used to compute constants for each zone or system.

$$
\begin{aligned}
& n=\frac{a-b}{a+b}=\frac{f}{2-f} \\
& r=a(1-n)\left(1-n^{2}\right)\left(1+\frac{9 n^{2}}{4}+\frac{225 n^{4}}{64}\right) \\
& u_{2}=-\frac{3 n}{2}+\frac{9 n^{3}}{16} \quad U_{0}=2\left(u_{2}-2 u_{4}+3 u_{6}-4 u_{8}\right) \\
& u_{4}=\frac{15 n^{2}}{16}-\frac{15 n^{4}}{32} \\
& u_{2}=8\left(u_{4}-4 u_{6}+10 u_{8}\right) \\
& u_{6}=-\frac{35 n^{3}}{48} \\
& u_{8}=32\left(u_{6}-6 u_{8}\right) \\
& u_{8}=\frac{315 n^{4}}{512}
\end{aligned}
$$

$$
\begin{array}{ll}
\mathrm{v}_{2}=\frac{3 \mathrm{n}}{2}-\frac{27 \mathrm{n}^{3}}{32} & \mathrm{~V}_{0}=2\left(\mathrm{v}_{2}-2 \mathrm{v}_{4}+3 \mathrm{v}_{6}-4 \mathrm{v}_{8}\right) \\
\mathrm{v}_{4}=\frac{21 \mathrm{n}^{2}}{16}-\frac{55 \mathrm{n}^{4}}{32} & \mathrm{~V}_{2}=8\left(\mathrm{v}_{4}-4 \mathrm{v}_{6}+10 \mathrm{v}_{8}\right) \\
\mathrm{v}_{6}=\frac{151 \mathrm{n}^{3}}{96} & \mathrm{~V}_{4}=32\left(\mathrm{v}_{6}-6 \mathrm{v}_{8}\right) \\
\mathrm{V}_{6}=128 \mathrm{v}_{8}
\end{array}
$$

$\omega_{0}=\phi_{0}+\sin \phi_{0} \cos \phi_{0}\left(U_{0}+U_{2} \cos ^{2} \phi_{0}+U_{4} \cos ^{4} \phi_{0}+U_{6} \cos ^{6} \phi_{0}\right)$
$S_{0}=k_{0} \omega_{0} r$

Two-Dimensional Rectangular Coordinate Systems

Transverse Mercator Cylindrical Projection

Two-Dimensional Rectangular Coordinate Systems

Transverse Mercator Cylindrical Projection

Inverse Conversion Grid to geodetic coordinates.

$$
\begin{aligned}
& \omega=\frac{\left(N-N_{o}+S_{o}\right)}{k_{o} r} \\
& \phi_{f}=\omega+(\sin \omega \cos \omega)\left(V_{0}+V_{2} \cos ^{2} \omega+V_{4} \cos ^{4} \omega+V_{6} \cos ^{6} \omega\right) \\
& t_{f}=\tan \phi_{f} \\
& \eta_{f}^{2}=e^{12} \cos ^{2} \phi_{f} \\
& R_{f}=\frac{k_{o} a}{\left(1-e^{2} \sin ^{2} \phi_{f}\right)^{1 / 2}} \\
& Q=\frac{\left(E-E_{o}\right)}{R_{f}} \\
& B_{2}=-\frac{1}{2} t_{f}\left(1+\eta_{f}^{2}\right) \\
& B_{3}=-\frac{1}{6}\left(1+2 t_{f}^{2}+\eta_{f}^{2}\right) \\
& B_{4}=-\frac{1}{12}\left[5+3 t_{f}^{2}+\eta_{f}^{2}\left(1-9 t_{f}^{2}\right)-4 \eta_{f}^{4}\right] \\
& B_{5}=\frac{1}{120}\left[5+28 t_{f}^{2}+24 t_{f}^{4}+\eta_{f}^{2}\left(6+8 t_{f}^{2}\right)\right] \\
& B_{6}=\frac{1}{360}\left[61+90 t_{f}^{2}+45 t_{f}^{4}+\eta_{f}^{2}\left(46-252 t_{f}^{2}-90 t_{f}^{4}\right)\right] \\
& B_{7}=-\frac{1}{5040}\left(61+662 t_{f}^{2}+1320 t_{f}^{4}+720 t_{f}^{6}\right)
\end{aligned}
$$

$$
\begin{aligned}
& L=Q\left[1+Q^{2}\left(B_{3}+Q^{2}\left(B_{5}+B_{7} Q^{2}\right)\right)\right] \\
& \phi=\phi_{f}+B_{2} Q^{2}\left[1+Q^{2}\left(B_{4}+B_{6} Q^{2}\right)\right] \\
& \lambda=\lambda_{o}-\frac{L}{\cos \phi_{f}} \\
& D_{1}=t_{f} \\
& D_{3}=-\frac{1}{3}\left(1+t_{f}^{2}-\eta_{f}^{2}-2 \eta_{f}^{4}\right) \\
& D_{5}=\frac{1}{15}\left(2+5 t_{f}^{2}+3 t_{f}^{4}\right) \\
& G_{2}=\frac{1}{2}\left(1+\eta_{f}^{2}\right) \\
& G_{4}=\frac{1}{12}\left(1+5 \eta_{f}^{2}\right) \\
& \gamma=D_{1} Q\left[1+Q^{2}\left(D_{3}+D_{5} Q^{2}\right)\right] \\
& k=k_{0}\left[1+G_{2} Q^{2}\left(1+G_{4} Q^{2}\right)\right]
\end{aligned}
$$

Two-Dimensional Rectangular Coordinate Systems

Lambert Conic Projection
North Pole

Two-Dimensional Rectangular Coordinate Systems

Lambert Conic Projection

Computing Zone/System Constants

Design parameters are used to compute constants for each zone or system.

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{s}}=\frac{1}{2}\left[\ln \left(\frac{1+\sin \phi_{\mathrm{s}}}{1-\sin \phi_{\mathrm{s}}}\right)-\mathrm{e} \ln \left(\frac{1+\mathrm{e} \sin \phi_{\mathrm{s}}}{1-\mathrm{e} \sin \phi_{\mathrm{s}}}\right)\right] \\
& \mathrm{W}_{\mathrm{s}}=\left(1-\mathrm{e}^{2} \sin ^{2} \phi_{\mathrm{s}}\right)^{1 / 2} \\
& \sin \phi_{o}=\frac{\ln \left(W_{n} \cos \phi_{s} / W_{s} \cos \phi_{n}\right)}{Q_{n}-Q_{s}} \\
& K=\frac{a \cos \phi_{\mathrm{s}} \exp \left(Q_{\mathrm{s}} \sin \phi_{\mathrm{o}}\right)}{\mathrm{W}_{\mathrm{s}} \sin \phi_{\mathrm{o}}}=\frac{a \cos \phi_{\mathrm{n}} \exp \left(\mathrm{Q}_{\mathrm{n}} \sin \phi_{\mathrm{o}}\right)}{\mathrm{W}_{\mathrm{n}} \sin \phi_{o}} \\
& R_{b}=\frac{K}{\exp \left(Q_{b} \sin \phi_{o}\right)} \\
& R_{0}=\frac{K}{\exp \left(Q_{0} \sin \phi_{0}\right)} \\
& k_{0}=\frac{\left(W_{0} \tan \phi_{0} R_{0}\right)}{a} \\
& N_{o}=R_{b}+N_{b}-R_{o}
\end{aligned}
$$

Two-Dimensional Rectangular Coordinate Systems

Lambert Conic Projection

Direct Conversion Geodetic to grid coordinates

$$
\begin{aligned}
& \mathrm{Q}=\frac{1}{2}\left[\ln \left(\frac{1+\sin \phi}{1-\sin \phi}\right)-\mathrm{e} \ln \left(\frac{1+\mathrm{e} \sin \phi}{1-\mathrm{e} \sin \phi}\right)\right] \\
& \mathrm{R}=\frac{\mathrm{K}}{\exp \left(\mathrm{Q} \sin \phi_{\mathrm{o}}\right)} \\
& \gamma=\left(\lambda_{\mathrm{o}}-\lambda\right) \sin \phi_{\mathrm{o}} \\
& \mathrm{~N}=\mathrm{R}_{\mathrm{b}}+\mathrm{N}_{\mathrm{b}}-\mathrm{R} \cos \gamma \\
& \mathrm{E}=\mathrm{E}_{\mathrm{o}}+\mathrm{R} \sin \gamma \\
& \mathrm{~K}=\left(1-\mathrm{e}^{2} \sin ^{2} \phi\right)^{1 / 2} \frac{\left(\mathrm{R} \sin \phi_{\mathrm{o}}\right)}{(\mathrm{a} \cos \phi)}
\end{aligned}
$$

Two-Dimensional Rectangular Coordinate Systems

Lambert Conic Projection

Inverse Conversion Grid to geodetic coordinates.

$$
\begin{array}{ll}
\mathrm{R}^{\prime}=\mathrm{R}_{\mathrm{b}}-\mathrm{N}+\mathrm{N}_{\mathrm{b}} & \mathrm{f}_{1}=\frac{1}{2}\left[\ln \left(\frac{1+\sin \phi}{1-\sin \phi}\right)-\mathrm{e} \ln \left(\frac{1+\mathrm{e} \sin \phi}{1-\mathrm{e} \sin \phi}\right)\right]-\mathrm{Q} \\
\mathrm{E}^{\prime}=\mathrm{E}-\mathrm{E}_{\mathrm{o}} & \mathrm{f}_{2}=\left(\frac{1}{1-\sin ^{2} \phi}\right)-\left(\frac{\mathrm{e}^{2}}{1-\mathrm{e}^{2} \sin ^{2} \phi}\right) \\
\gamma=\tan ^{-1}\left(\mathrm{E}^{\prime} / \mathrm{R}^{\prime}\right) & \\
\mathrm{R}=\lambda_{\mathrm{o}}-\left(\gamma / \mathrm{R}^{\prime 2}+\mathrm{E}^{\prime 2}\right)^{1 / 2} & \\
\mathrm{Q}=\frac{\ln (\mathrm{K} / \mathrm{R})}{\sin \phi_{o}} & \mathrm{k}=\left(1-\mathrm{e}^{2} \sin ^{2} \phi\right)^{1 / 2} \frac{\left(\mathrm{R} \sin \phi_{o}\right)}{(\mathrm{a} \cos \phi)}
\end{array}
$$

Formal Coordinate Systems in Wisconsin

Wisconsin State Plane Coordinate (SPC) Zones
NAD 27 and NAD 83

Three Lambert Conic Projection Zones
Maximum scale distortion
(ellipsoid to projection): 1/10,000

Formal Coordinate Systems in Wisconsin

Wisconsin State Plane Coordinate (SPC) Zones
 NAD 27

NAD 27 uses the US Survey foot (39.37 inches $=1$ meter, exact) as the defining linear unit.

Formal Coordinate Systems in Wisconsin

Wisconsin State Plane Coordinate (SPC) Zones
 NAD 83

NAD 83 datums use the meter as the defining linear unit.

Formal Coordinate Systems in Wisconsin

Universal Transverse Mercator (UTM) Zones NAD 27 and NAD 83

Maximum scale distortion
(ellipsoid to projection): 1/2,500
Two 6° wide transverse cylindrical zones

UTM Zones are defined using the same parameters for both NAD 27 and NAD 83 datums:

	UTM Zone	UTM 15 N	UTM 16 N
	Central Meridian	$93^{\circ} 00^{\prime} \mathrm{W}$	$87^{\circ} 00^{\prime} \mathrm{W}$
	Latitude of Origin	$0^{\circ} 00^{\prime} \mathrm{N}$	$0^{\circ} 00^{\prime} \mathrm{N}$
N_{0}	Origin Northing	0 m	0 m
E_{\circ}	Origin Easting	$500,000 \mathrm{~m}$	$500,000 \mathrm{~m}$
k_{0}	Scale at Cen Mer	0.9996	0.9996

UTM systems use the meter as the defining linear unit.

Formal Coordinate Systems in Wisconsin

Wisconsin Transverse Mercator (WTM) Zone
 NAD 27 and NAD 83

Maximum scale distortion
(ellipsoid to projection): 1/2,500
One 6° wide transverse cylindrical zone

WTM is defined for NAD 27 and NAD 83.
A distinct "shift" of approximately 13 miles in northing and easting was introduced to the NAD 83 parameters to more easily distinguish the coordinate values:

		$N A D 27$	$N A D 83$
	Central Meridian	$90^{\circ} 00^{\prime} \mathrm{W}$	$90^{\circ} 00^{\prime} \mathrm{W}$
	Latitude of Origin	$0^{\circ} 00^{\prime} \mathrm{N}$	$0^{\circ} 00^{\prime} \mathrm{N}$
N_{0}	Origin Northing	$-4,500,000 \mathrm{~m}$	$-4,480,000 \mathrm{~m}$
E_{o}	Origin Easting	$500,000 \mathrm{~m}$	$520,000 \mathrm{~m}$
k_{0}	Scale at Cen Mer	0.9996	0.9996

The WTM system uses the meter as the defining linear unit.

Formal Coordinate Systems in Wisconsin

Wisconsin County Coordinate System

NAD 83 (1991)

59 systems covering 72 counties
Conic or cylindrical projection
Each uses a "raised" ellipsoid
Maximum ratio: (grid to ground)
1/30,000 rural 1/50,000 urban

Formal Coordinate Systems in Wisconsin

Wisconsin County Coordinate System
 NAD 83 (1991)

Conic projections

County	$\mathrm{H}_{\mathrm{d}}(\mathrm{m})$	$\mathrm{N}_{\mathrm{d}}(\mathrm{m})$	λ_{0} (d.ms)	ϕ_{b} (d.ms)	E_{o} (m)	$\mathrm{N}_{\mathrm{b}}(\mathrm{m})$	ϕ_{n} (d.ms)	ϕ_{s} (d.ms)
Bayfield	304.801	-30.45	91 ${ }^{\circ} 09^{\prime \prime} 10^{\prime \prime}$	$45^{\circ} 20^{\prime} 00^{\prime \prime}$	228,600.4572	0.0000	$46^{\circ} 55^{\prime} 30{ }^{\prime \prime}$	$46^{\circ} 24^{\prime} 50{ }^{\prime \prime}$
Burnett	304.800	-26.84	$92^{\circ} 27^{\prime \prime} 28^{\prime \prime}$	$45^{\circ} 21^{\prime} 50{ }^{\prime \prime}$	64,008.1280	0.0000	$46^{\circ} 05^{\prime} 00{ }^{\prime \prime}$	$45^{\circ} 21^{\prime} 50{ }^{\prime \prime}$
Chippewa	304.800	-29.26	91¹7'40"	$44^{\circ} 34^{\prime} 52{ }^{\prime \prime}$	60,045.7201	0.0000	$45^{\circ} 08^{\prime} 30{ }^{\prime \prime}$	$44^{\circ} 48^{\prime} 50{ }^{\prime \prime}$
Columbia	274.321	-34.99	89 ${ }^{\circ} 23^{\prime} 40{ }^{\prime \prime}$	$42^{\circ} 27^{\prime} 30{ }^{\prime \prime}$	169,164.3383	0.0000	$43^{\circ} 35^{\prime} 30{ }^{\prime \prime}$	$43^{\circ} 20^{\prime} 00{ }^{\prime \prime}$
Crawford	274.321	-32.29	$90^{\circ} 56^{\prime} 20^{\prime \prime}$	$42^{\circ} 43^{\prime} 00^{\prime \prime}$	113,690.6274	0.0000	$43^{\circ} 20^{\prime} 30^{\prime \prime}$	$43^{\circ} 03^{\prime} 30{ }^{\prime \prime}$
Dane	304.801	-34.18	89 ${ }^{\circ} 25^{\prime 2} 20^{\prime \prime}$	$41^{\circ} 45^{\prime} 00{ }^{\prime \prime}$	247,193.2944	0.0000	$43^{\circ} 13^{\prime \prime} 50^{\prime \prime}$	$42^{\circ} 54{ }^{\prime} 30 \prime$
Eau Claire	274.321	-30.94	91 ${ }^{\circ} 17^{\prime 2} 20^{\prime \prime}$	$44^{\circ} 02^{\prime 5} 0^{\prime \prime}$	120,091.4402	0.0000	$45^{\circ} 00^{\prime} 50{ }^{\prime \prime}$	$44^{\circ} 43^{\prime} 50{ }^{\prime \prime}$
Green	304.801	-33.32	89 ${ }^{\circ} 50^{\prime 2} 0^{\prime \prime}$	$42^{\circ} 13^{\prime} 30 \prime$	170,078.7402	0.0000	$42^{\circ} 47^{\prime 2} 2{ }^{\prime \prime}$	$42^{\circ} 29^{\prime} 10{ }^{\prime \prime}$
Green Lake	274.321	-35.72	89 ${ }^{\circ} 14^{\prime} 30 \prime$	$43^{\circ} 05^{\prime} 40{ }^{\prime \prime}$	150,876.3018	0.0000	$43^{\circ} 56^{\prime} 50{ }^{\prime \prime}$	$43^{\circ} 40^{\prime} 00{ }^{\prime \prime}$
Jackson*	304.810	-32.65	9044'20"	$43^{\circ} 47^{\prime} 40$ "	125,882.6518	0.0000	$44^{\circ} 25^{\prime} 10^{\prime \prime}$	$44^{\circ} 09^{\prime} 50{ }^{\prime \prime}$
Lafayette	304.801	-33.32	$89^{\circ} 50^{\prime 2} 2{ }^{\prime \prime}$	42 ${ }^{\circ} 13^{\prime} 30{ }^{\prime \prime}$	170,078.7402	0.0000	$42^{\circ} 47^{\prime} 20{ }^{\prime \prime}$	$42^{\circ} 29^{\prime} 10{ }^{\prime \prime}$
Langlade	457.201	-34.08	89 ${ }^{\circ} 02^{\prime} 00{ }^{\prime \prime}$	$44^{\circ} 12^{\prime 2} 25^{\prime \prime}$	198,425.1968	0.0000	$45^{\circ} 18^{\prime} 30{ }^{\prime \prime}$	$45^{\circ} 00^{\prime} 00^{\prime \prime}$
Marathon	396.240	-32.64	$89^{\circ} 46^{\prime} 12^{\prime \prime}$	$44^{\circ} 24^{\prime 2} 2{ }^{\prime \prime}$	74,676.1494	0.0000	$45^{\circ} 03^{\prime 2} 2{ }^{\prime \prime}$	$44^{\circ} 44^{\prime} 43^{\prime \prime}$
Marquette	274.321	-35.72	89 ${ }^{\circ} 14^{\prime} 30^{\prime \prime}$	$43^{\circ} 05^{\prime} 40{ }^{\prime \prime}$	150,876.3018	0.0000	$43^{\circ} 56^{\prime} 50{ }^{\prime \prime}$	$43^{\circ} 40^{\prime} 00^{\prime \prime}$
Monroe	335.281	-33.29	9038'30"	$42^{\circ} 54{ }^{\prime} 10 "$	204,521.2091	0.0000	$44^{\circ} 09^{\prime} 40{ }^{\prime \prime}$	$43^{\circ} 50^{\prime} 20 "$
Oneida	487.700	-30.84	89 ${ }^{\circ} 32^{\prime} 40 \prime$	$45^{\circ} 11^{\prime \prime} 10{ }^{\prime \prime}$	70,104.1402	0.0000	$45^{\circ} 50^{\prime} 30{ }^{\prime \prime}$	$45^{\circ} 34^{\prime} 00^{\prime \prime}$
Pepin	274.321	-30.05	92 ${ }^{\circ} 13^{\prime} 40{ }^{\prime \prime}$	$43^{\circ} 51{ }^{\prime} 43 \prime \prime$	167,640.3353	0.0000	$44^{\circ} 45^{\prime} 00{ }^{\prime \prime}$	$44^{\circ} 31{ }^{\prime} 20^{\prime \prime}$
Pierce	274.321	-30.05	92 ${ }^{\circ} 13^{\prime} 40{ }^{\prime \prime}$	$43^{\circ} 51{ }^{\prime} 43 "$	167,640.3353	0.0000	$44^{\circ} 45^{\prime} 00{ }^{\prime \prime}$	$44^{\circ} 31{ }^{\prime} 20^{\prime \prime}$
Portage	341.377	-34.00	$89^{\circ} 30^{\prime} 00 \prime$	$43^{\circ} 58^{\prime} 00{ }^{\prime \prime}$	56,388.1128	0.0000	$44^{\circ} 38^{\prime} 60{ }^{\prime \prime}$	$44^{\circ} 11^{\prime} 00{ }^{\prime \prime}$

* These parameters are for the WCCS Jackson County System.

Formal Coordinate Systems in Wisconsin

Wisconsin County Coordinate System
 NAD 83 (1991)

Conic projections

County	$\mathbf{H}_{\mathrm{d}}(\mathrm{m})$	$\mathbf{N}_{\mathrm{d}}(\mathrm{m})$	$\lambda_{0}(\mathrm{~d} . \mathrm{ms})$	$\phi_{\mathrm{b}}(\mathrm{d} . \mathrm{ms})$	$\mathbf{E}_{\mathrm{o}}(\mathrm{m})$	$\mathbf{N}_{\mathrm{b}}(\mathrm{m})$	$\phi_{\mathrm{n}}(\mathrm{d} . \mathrm{ms})$	$\phi_{\mathrm{s}}(\mathrm{d} . \mathrm{ms})$
Richland	304.801	-33.71	$90^{\circ} 25^{\prime} 50 "$	$42^{\circ} 06^{\prime} 50^{\prime \prime}$	$202,387.6048$	0.0000	$43^{\circ} 30^{\prime} 10 "$	$43^{\circ} 08^{\prime} 30^{\prime \prime}$
Sawyer	476.721	-29.27	$91^{\circ} 07^{\prime} 00 "$	$44^{\circ} 48^{\prime} 50^{\prime \prime}$	$216,713.2334$	0.0000	$46^{\circ} 04^{\prime} 50^{\prime \prime}$	$45^{\circ} 43^{\prime} 10^{\prime \prime}$
Taylor	426.721	-30.80	$90^{\circ} 29^{\prime} 00^{\prime \prime}$	$44^{\circ} 12^{\prime} 30^{\prime \prime}$	$187,147.5743$	0.0000	$45^{\circ} 18^{\prime} 00^{\prime \prime}$	$45^{\circ} 03^{\prime} 20^{\prime \prime}$
Vernon	304.801	-32.86	$90^{\circ} 47^{\prime} 00^{\prime \prime}$	$43^{\circ} 08^{\prime} 50^{\prime \prime}$	$222,504.4450$	0.0000	$43^{\circ} 41^{\prime} 00^{\prime \prime}$	$43^{\circ} 28^{\prime} 00^{\prime \prime}$
Vilas	518.161	-30.99	$89^{\circ} 29^{\prime} 20^{\prime \prime}$	$45^{\circ} 37^{\prime} 30^{\prime \prime}$	$134,417.0688$	0.0000	$46^{\circ} 13^{\prime} 30^{\prime \prime}$	$45^{\circ} 55^{\prime} 50^{\prime \prime}$
Walworth	274.321	-33.91	$88^{\circ} 32^{\prime} 30^{\prime \prime}$	$41^{\circ} 40^{\prime} 10^{\prime \prime}$	$232,562.8651$	0.0000	$42^{\circ} 45^{\prime} 00^{\prime \prime}$	$42^{\circ} 35^{\prime 2} 20^{\prime \prime}$
Washburn	365.761	-28.17	$91^{\circ} 47^{\prime} 00^{\prime \prime}$	$44^{\circ} 15^{\prime} 60^{\prime \prime}$	$234,086.8681$	0.0000	$46^{\circ} 09^{\prime} 00^{\prime \prime}$	$45^{\circ} 46^{\prime} 20^{\prime \prime}$
Waushara	304.801	-35.83	$89^{\circ} 14^{\prime} 30^{\prime \prime}$	$43^{\circ} 42^{\prime} 30^{\prime \prime}$	$120,091.4402$	0.0000	$44^{\circ} 15^{\prime} 10^{\prime \prime}$	$43^{\circ} 58^{\prime} 30^{\prime \prime}$
Wood	335.281	-34.63	$90^{\circ} 00^{\prime} 00^{\prime \prime}$	$43^{\circ} 09^{\prime} 05^{\prime \prime}$	$208,483.6170$	0.0000	$44^{\circ} 32^{\prime} 40^{\prime \prime}$	$44^{\circ} 10^{\prime} 50^{\prime \prime}$

Formal Coordinate Systems in Wisconsin

Wisconsin County Coordinate System

NAD 83 (1991)

The Jackson County Official Projection does not use a raised enlarged ellipsoid and is instead referenced to the GRS 80 ellipsoid. It is based on a transverse cylindric projection:

	Central Meridian	$90^{\circ} 50^{\prime} 39.46747 \mathrm{ln}$ W
	Latitude of Origin	$44^{\circ} 15^{\prime} 12.00646^{\prime \prime} \mathrm{N}$
N_{o}	Origin Northing	$25,000.000 \mathrm{~m}$
E_{o}	Origin Easting	$27,000.000 \mathrm{~m}$
k_{o}	Scale at Cen Mer	1.0000353000

Formal Coordinate Systems in Wisconsin

Wisconsin County Coordinate System
 NAD 83 (1991)

Cylindrical projections

County	$\mathbf{H}_{\text {d }}(\mathrm{m})$	$\mathrm{N}_{\mathrm{d}}(\mathrm{m})$	λ_{0} (d.ms)	ϕ_{0} (d.ms)	$E_{\text {o }}(\mathrm{m})$	$\mathrm{N}_{\mathrm{o}}(\mathrm{m})$	$\mathrm{k}_{\text {o }}$
Adams	274.321	-35.05	$90^{\circ} 00^{\prime} 00^{\prime \prime}$	43 ${ }^{\circ} 22^{\prime} 00^{\prime \prime}$	147,218.6945	0.0000	0.999999000
Ashland	365.760	-30.84	$90^{\circ} 37^{\prime \prime} 20^{\prime \prime}$	$45^{\circ} 42^{\prime 2} 22^{\prime \prime}$	172,821.9456	0.0000	0.999997000
Barron	365.761	-29.83	$91^{\circ} 51^{\prime} 00{ }^{\prime \prime}$	$45^{\circ} 08^{\prime} 00^{\prime \prime}$	93,150.0000	0.0000	0.999996000
Brown	35.800	-35.80	88 ${ }^{\circ} 00^{\prime} 00 \prime$	$43^{\circ} 00^{\prime} 00^{\prime \prime}$	31,600.0000	4,600.0000	1.000020000
Buffalo	274.321	-30.33	$91^{\circ} 47^{\prime} 50{ }^{\prime \prime}$	$43^{\circ} 28^{\prime} 53{ }^{\prime \prime}$	175,260.3505	0.0000	1.000000000
Calumet	243.840	-35.75	88 ${ }^{\circ} 30^{\prime} 00^{\prime \prime}$	420 $43^{\prime} 10^{\prime \prime}$	244,754.8895	0.0000	0.999996000
Clark	365.761	-32.36	$90^{\circ} 42^{\prime} 30 \prime$	$43^{\circ} 36^{\prime} 00^{\prime \prime}$	199,949.1998	0.0000	0.999994000
Dodge	274.321	-34.51	$88^{\circ} 46^{\prime} 30 \prime$	$41^{\circ} 28^{\prime} 20 "$	263,347.7267	0.0000	0.999997000
Door	213.360	-36.44	$87^{\circ} 16^{\prime 2} 2{ }^{\prime \prime}$	$44^{\circ} 24^{\prime} 00^{\prime \prime}$	158,801.1176	0.0000	0.999991000
Douglas	304.800	-26.87	$91^{\circ} 55^{\prime} 00{ }^{\prime \prime}$	$45^{\circ} 53^{\prime} 00{ }^{\prime \prime}$	59,131.3183	0.0000	0.999994968
Dunn	304.801	-28.78	$91^{\circ} 53^{\prime} 40{ }^{\prime \prime}$	$44^{\circ} 24^{\prime} 30{ }^{\prime \prime}$	51,816.1040	0.0000	0.999997730
Florence	426.721	-32.87	$88^{\circ} 08^{\prime} 30 \prime$	$45^{\circ} 26^{\prime} 20^{\prime \prime}$	133,502.6670	0.0000	0.999993500
Fond du Lac	243.840	-35.75	$88^{\circ} 30^{\prime} 00{ }^{\prime \prime}$	$42^{\circ} 43^{\prime} 10{ }^{\prime \prime}$	244,754.8895	0.0000	0.999996000
Forest	487.681	-33.16	88 ${ }^{\circ} 38^{\prime} 00 \prime$	$44^{\circ} 00^{\prime} 20^{\prime \prime}$	275,844.5516	0.0000	0.999996000
Grant	274.321	-32.44	$90^{\circ} 48^{\prime} 00{ }^{\prime \prime}$	$41^{\circ} 24{ }^{\prime} 40{ }^{\prime \prime}$	242,316.4847	0.0000	0.999997000
lowa	304.801	-33.76	90 ${ }^{\circ} 09^{\prime} 40 \prime$	42 ${ }^{\circ} 2^{\prime \prime} 20{ }^{\prime \prime}$	113,081.0262	0.0000	0.999997000
Iron	487.681	-30.39	$90^{\circ} 15^{\prime} 20 \prime$	$45^{\circ} 26^{\prime} 00^{\prime \prime}$	220,980.4420	0.0000	0.999996000
Jefferson	274.321	-34.51	88 ${ }^{\circ} 46^{\prime} 30 \prime$	$41^{\circ} 28^{\prime} 20{ }^{\prime \prime}$	263,347.7267	0.0000	0.999997000
Juneau	274.321	-35.05	90 ${ }^{\circ} 00^{\prime} 00 \prime$	$43^{\circ} 22^{\prime} 00^{\prime \prime}$	147,218.6945	0.0000	0.999999000
Kenosha	213.360	-34.66	$87^{\circ} 53^{\prime} 40 "$	$42^{\circ} 13^{\prime} 00^{\prime \prime}$	185,928.3719	0.0000	0.999998000
Kewaunee	182.880	-34.02	$87^{\circ} 33^{\prime} 00{ }^{\prime \prime}$	$43^{\circ} 16^{\prime} 00^{\prime \prime}$	79,857.7600	0.0000	1.000000000
LaCrosse	274.321	-32.02	91¹9'00"	$43^{\circ} 27^{\prime} 04{ }^{\prime \prime}$	130,454.6609	0.0000	0.999994000

Formal Coordinate Systems in Wisconsin

Wisconsin County Coordinate System
 NAD 83 (1991)

Cylindrical projections

County	$\mathbf{H}_{\text {d }}(\mathrm{m})$	$\mathrm{N}_{\mathrm{d}}(\mathrm{m})$	λ_{0} (d.ms)	ϕ_{0} (d.ms)	$E_{0}(\mathrm{~m})$	$\mathrm{N}_{0}(\mathrm{~m})$	$\mathrm{k}_{\text {o }}$
Lincoln	426.721	-31.90	$89^{\circ} 44^{\prime} 00^{\prime \prime}$	$44^{\circ} 50^{\prime} 40{ }^{\prime \prime}$	116,129.0323	0.0000	0.999998000
Manitowoc	182.880	-34.02	$87^{\circ} 33^{\prime} 00^{\prime \prime}$	$43^{\circ} 16^{\prime} 00{ }^{\prime \prime}$	79,857.7600	0.0000	1.000000000
Marinette	274.321	-35.28	$87^{\circ} 42^{\prime} 40 "$	$44^{\circ} 41^{\prime} 30^{\prime \prime}$	238,658.8774	0.0000	0.999986000
Menominee	304.801	-35.20	$88^{\circ} 25^{\prime} 00^{\prime \prime}$	$44^{\circ} 43^{\prime} 00^{\prime \prime}$	105,461.0109	0.0000	0.999994000
Milwaukee	213.360	-34.66	$87^{\circ} 53^{\prime} 40 "$	$42^{\circ} 13^{\prime} 00{ }^{\prime \prime}$	185,928.3719	0.0000	0.999998000
Oconto	243.840	-35.42	$87^{\circ} 54^{\prime} 30 "$	$44^{\circ} 23^{\prime} 50{ }^{\prime \prime}$	182,880.3658	0.0000	0.999991000
Outagamie	243.840	-35.75	$88^{\circ} 30^{\prime} 00^{\prime \prime}$	$42^{\circ} 43^{\prime} 10^{\prime \prime}$	244,754.8895	0.0000	0.999996000
Ozaukee	213.360	-34.66	$87^{\circ} 53^{\prime} 40 "$	$42^{\circ} 13^{\prime} 00{ }^{\prime \prime}$	185,928.3719	0.0000	0.999998000
Polk	304.801	-28.13	$92^{\circ} 38^{\prime} 00{ }^{\prime \prime}$	$44^{\circ} 39^{\prime} 40{ }^{\prime \prime}$	141,732.2834	0.0000	1.000000000
Price	457.201	-30.31	90 ${ }^{\circ} 29^{\prime 2} 2{ }^{\prime \prime}$	$44^{\circ} 33^{\prime} 20{ }^{\prime \prime}$	227,990.8560	0.0000	0.999998000
Racine	213.360	-34.66	$87^{\circ} 53^{\prime} 40 "$	$42^{\circ} 13^{\prime} 00{ }^{\prime \prime}$	185,928.3719	0.0000	0.999998000
Rock	274.321	-33.65	89 ${ }^{\circ} 04^{\prime} 20 "$	$41^{\circ} 56^{\prime} 40{ }^{\prime \prime}$	146,304.2926	0.0000	0.999996000
Rusk	365.761	-30.01	$91^{\circ} 04^{\prime} 00^{\prime \prime}$	$43^{\circ} 55^{\prime} 10^{\prime \prime}$	250,546.1011	0.0000	0.999997000
Sauk	304.801	-34.52	$89^{\circ} 54^{\prime} 00{ }^{\prime \prime}$	$42^{\circ} 49^{\prime} 10^{\prime \prime}$	185,623.5713	0.0000	0.999995000
Shawano	304.801	-35.75	88 ${ }^{\circ} 36^{\prime 2} 2{ }^{\prime \prime}$	$44^{\circ} 02^{\prime} 10{ }^{\prime \prime}$	262,433.3249	0.0000	0.999990000
Sheboygan	182.880	-34.02	$87^{\circ} 33^{\prime} 00^{\prime \prime}$	$43^{\circ} 16^{\prime} 00{ }^{\prime \prime}$	79,857.7600	0.0000	1.000000000
St. Croix	304.801	-29.29	$92^{\circ} 38^{\prime} 00^{\prime \prime}$	$44^{\circ} 02^{\prime} 10{ }^{\prime \prime}$	165,506.7310	0.0000	0.999995000
Trempealeau	274.321	-31.23	$91^{\circ} 22^{\prime} 00^{\prime \prime}$	$43^{\circ} 09^{\prime} 40{ }^{\prime \prime}$	256,946.9138	0.0000	0.999998000
Washington	304.801	-34.66	88 ${ }^{\circ} 03^{\prime} 50 \prime$	$42^{\circ} 55^{\prime} 05^{\prime \prime}$	120,091.4402	0.0000	0.999995000
Waukesha	274.321	-34.45	888 ${ }^{\circ} 13^{\prime} 30 \prime$	$42^{\circ} 34^{\prime} 10{ }^{\prime \prime}$	208,788.4176	0.0000	0.999997000
Waupaca	274.321	-36.07	88 $8^{\circ} 49^{\prime} 00^{\prime \prime}$	$43^{\circ} 25^{\prime} 13^{\prime \prime}$	185,013.9701	0.0000	0.999996000
Winnebago	243.840	-35.75	$88^{\circ} 30^{\prime} 00^{\prime \prime}$	$42^{\circ} 43^{\prime} 10^{\prime \prime}$	244,754.8895	0.0000	0.999996000

WCCS: Emerging Issues \& Solutions

A Al Vonderohe

Emerging Issue

- Enlarging the ellipsoid has the mathematical effect of modifying the underlying geodetic datum.
- This has caused difficulties in both the vendor and user communities.
- Vendors want to support WCCS, but there is complexity.
- Most of the user community doesn't have a clue about datums and map projections.

WLIA Task Force

The WLIA Task Force on Wisconsin Coordinate Systems was formed early this year to address this and other issues associated with location referencing in Wisconsin.
A question that emerged:
Can the WCCS be re-designed so that:
There is no need to change the ellipsoid from GRS 80. That is, there will be one datum for all projections.
2. Coordinate differences between the existing and redesigned systems will be within negligible bounds. In this way, legacy databases and records will not have to be modified.

- Leave the ellipsoid where it is and enlarge only the map projection surface.
This way, the ellipsoid factor and the scale factor are nearly inverses of one another and their product = 1 .

Approach to Lambert Re-Design

Two strategies:

Make the original and re-designed map projection surfaces be identical in threedimensional space.

- This will cause the latitude of the central parallel $\left(\phi_{0}\right)$ to change.
- Challenge: Finding ϕ_{0}.

2. Hold ϕ_{0} constant.

- This will cause the original and re-designed map projection surfaces to be dissimilar.
- Challenge: Finding k_{0}.

Approach to Strategy 1

Work in geocentric coordinates (3D rectangular). Use analytical geometry.
Find equations of the line that is the projection of the central meridian.
Find the point of tangency between GRS 80 ellipsoid and a line parallel with the above line. Convert $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ of this point to $\phi, \lambda, \mathrm{h} . \phi$ is the latitude of the central parallel.

Geocentric / Geodetic Coordinates

- Geocentric coordinates are based upon a 3D right-handed system with origin at ellipsoid center, XY plane is the equatorial plane, +X axis passes through $\lambda=$ $08,+Y$ axis passes through $\lambda=908 \mathrm{E}$.
- For any point, there are direct and inverse transformations between X, Y, Z and
 ϕ, λ, h.

Approach to Strategy 1

Profile through GRS80, enlarged ellipsoid, and original map projection surface at λ_{0} :

Geodetic coords $=\phi_{1}, \lambda_{0}, 0$; Compute X, Y, Z
Map projection surface

GRS 80

Find X, Y, Z of point of tangency. Transform to ϕ_{0}, λ_{0}, h.

NOTE: Two sets of geodetic coordinates; one set of geocentric coordinates.

Approach to Strategy 1

To find k_{0} :

Approach to Strategy 1

There will be discrepancies because the two ellipsoids do not have the same shape.
Compute best fit translation in Y (change in false northing) and scale from sets of coordinates of points in both the original and re-designed systems.

Points should be well-distributed across geographic extent.
Apply these best fits to final re-designed parameters.

Dane County Test of Lambert Methodology (Strategy 1)

$\Delta X=-0.003 m ; \Delta Y=0.000 m$
$\Delta \Delta X=-0.001 m ; \Delta Y=-0.001 m$

$$
\Delta \mathrm{X}=+0.002 \mathrm{~m} ; \Delta \mathrm{Y}=0.000 \mathrm{~m} \boldsymbol{\Delta}
$$

- $\Delta X=+0.001 m ; \Delta Y=-0.001 m$

$$
\Delta X=+0.003 \mathrm{~m} ; \Delta \mathrm{Y}=+0.001 \mathrm{~m} \bullet
$$

Approach to Transverse Mercator
Re-Design

Hold all parameters initially constant except k_{0}.

- Compute new k_{0} in manner similar to that for Lambert re-design.
Compute best fits for translation in Y (false northing) and scale.Apply best fits to final parameters.
NOTE: Cannot hold map projection surface identical because the 2 cylinders have different shapes.

Lincoln County Test of Transverse Mercator Methodology

- $\Delta X=-0.002 m ; \Delta Y=-0.002 m$
$\Delta \mathrm{X}=+0.002 \mathrm{~m} ; \Delta \mathrm{Y}=+0.002 \mathrm{~m} \bullet$

Conclusions

- Under the re-design, all WCCS would have a single, common datum based upon the GRS 80 ellipsoid.
Initial tests indicate that WCCS can be redesigned to within 5 mm or better.
The WLIA Task Force has deemed 5 mm to be a negligible difference.
The WLIA Task Force is recommending redesign.

Summary

-Where are we headed?

- Ted Koch

Summary

Where are we headed?

- WCCS redesign proposal approved by WLIA - October '04
- WCCS redesign proposal approved by WLIB - November '04
- WLIB approves $\$ 35 \mathrm{~K}$ for redesign costs
- Contract for redesign through a single county using WLIB Strategic Initiative Grant

Summary

Where are we headed? (Continued)

- WCCS redesign completed by Sept. '05
- WCCS redesign documentation completed by Dec. '05
- During '05, TF will continue to address issues of registration, legislation and use
- Prepare a TF final report
- Continue to inform the community

Thank You

Questions???

