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1. Background.

A map projection is a mathematical surface with functional relationships between
points having geodetic coordinates (latitude and longitude) on a reference
ellipsoid and corresponding points with two-dimensional rectangular coordinates
(northing and easting) on the map projection surface. A map projection is
described by mathematical transformations between the two types of
coordinates. A “direct” transformation computes northing and easting (N,E) from
latitude and longitude (¢,A):

N = f1($,A, ellipsoid parameters, map projection parameters)
E = f2(9,A, ellipsoid parameters, map projection parameters)

An “inverse” transformation computes ¢,A from N,E:

¢ = g1(N,E, ellipsoid parameters, map projection parameters)
A = g2(N,E, ellipsoid parameters, map projection parameters)

In the equations above, ellipsoid parameters are two descriptors that define the
size and shape of the reference ellipsoid. In this document, those two parameters
are the semi-major axis (a) and the semi-minor axis (b). Map projection
parameters are descriptors that define the size and shape of the map projection
surface and its location and orientation with respect to the reference ellipsoid.
Map projection parameters also define the location of the rectangular coordinate
origin and its false northing and false easting values.

On any map projection, each point has a scale factor and a convergence. On
conformal map projections, such as transverse Mercator and Lambert conformal
conic, the scale factor is the same in all directions at any given point but is
variable from point to point. Convergence, sometimes referred to as “the
mapping angle”, also varies from point to point and is the angle between geodetic
north and grid north. It is defined as a geodetic azimuth minus the projection of
that azimuth on the map projection coordinate grid. Convergence at a point is not
the difference between geodetic azimuth and grid azimuth. Such a difference
depends not only upon convergence but also upon the “arc-to-chord” or “second
term” correction. Arc-to-chord corrections, at any point, vary with distance and
direction to an arbitrary second point, whose coordinates must be specified. This
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document presents methods for computing scale and convergence. It does not
address methods for computing arc-to-chord corrections. For many applications
arc-to-chord corrections are negligible.

The scale factor (denoted k) and convergence (denoted y ) are found by functions:

k = hi(d,A, a, b, map projection parameters)
v =h2(d,A, a, b, map projection parameters)

Finally, any given point on a map projection has a linear distortion that is the ratio
of a very small distance on Earth’s surface to the corresponding very small
distance on the map projection surface. Linear distortion accounts for the
separation between the two surfaces and expresses the error to be encountered
if ground distances are used for grid distances:

LD =i(¢, a, b, k, ellipsoid height)

This document presents each of the functions described above for transverse
Mercator projections and two types of Lambert conformal conic projections.

2. General Notation and Definitions.

¢ Geodetic latitude, positive north.

A Geodetic longitude, positive east (0° to 360°).
N Northing coordinate on the projection.

E Easting coordinate on the projection.

Ao Longitude of the central meridian and the coordinate origin.

Eo False easting of the coordinate origin.

do Latitude of the coordinate origin (transverse Mercator and non-intersecting
Lambert conformal conic). Also, latitude of the central parallel (Lambert
conformal conic).

ko Scale factor along the central meridian (transverse Mercator) or central

parallel (Lambert conformal conic).

Scale factor.

Convergence.

= X

Semi-major axis of the reference ellipsoid.
Semi-minor axis of the reference ellipsoid.
First eccentricity of the reference ellipsoid.
Second eccentricity of the reference ellipsoid.
Radius of curvature in the prime vertical.
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p Radius of curvature in the meridian.

Rec  Gaussian or geometric mean radius of curvature.
Ng Geoid height.

h Ellipsoid height.

H Orthometric height.

3. Ellipsoid Constants.

4. Transverse Mercator Projections (After Stem (1989)).

Transverse Mercator projections are based upon right cylinders whose axes lie in
the equatorial plane and pass through the center of the reference ellipsoid. The
selected right cylinder can be secant or tangent to the reference ellipsoid. It can
also not intersect the reference ellipsoid at all.

4.a. Projection-Specific Notation.

NOTE: Projection parameters are ¢o, Ao, Ko, No, Eo.

w Rectifying latitude.

S Meridional distance from the equator, multiplied by ko.

Wo Rectifying latitude at ¢o.

So Meridional distance from the equator to ¢o, multiplied by ko.
r Radius of the rectifying sphere.

No False northing of the coordinate origin.



4.b. Projection Constants.
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4.d. Inverse Transformation (N,E to ¢,A)
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4.e. Scale and Convergence.

Convergence () in radians.
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5. Lambert Conformal Conic Projections.

Lambert conformal conic projections are based upon right circular cones whose
axes coincide with the minor axis the reference ellipsoid. The selected right
circular cone can be secant or tangent to the reference ellipsoid. It can also not
intersect the reference ellipsoid at all.

5.a. Secant (Two Standard Parallels) (After Stem (1989)).

5.a.i. Projection-Specific Notation.

NOTE: Projection parameters are ¢n, ds, db, Ao, Nb, Eo.

N
¢s
db
Nb
R

Rb

Latitude of the northern standard parallel.
Latitude of the southern standard parallel.
Latitude of the coordinate origin.

False northing of the coordinate origin.
Mapping radius at latitude ¢.

Mapping radius at latitude ¢v.



5.a.ii. Projection Constants.
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5.a.iii. Direct Transformation (®,A to N,E).
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5.a.iv. Inverse Transformation (N,E to ®,A).

R::RD_N +ND

E'=E —E,

EJ'
=t -1
¥ an (R’)

Y
A=4
°+Sin¢)o
R=,R?+E"?

In (

Q=

)

sing,

Latitude computation is iterative:

1.

Approximate ¢ with ¢ = sin‘{%}

exp(2Q) +1
Compute a correction of (-f1 / f2) from:
(- l{ln[lﬂ!wj—eln(“ es!n¢ﬂ_Q
2 1-sing 1-esing

1 e
? 1-sin’¢ 1-e%sin’g

3. Add the correction to sing.

4. Repeat steps 2 and 3 twice more for a total of three corrections.

b (Rsing,)+/1 — e’sin’¢

acosg
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5.b. Non-Intersecting (Central Parallel and Its Scale Factor) (After Bomford
(1985)).

5.b.i. Projection-Specific Notation.

NOTE: Projection parameters are ¢o, Ao, Ko, No, Eo.

No False northing of the coordinate origin and northing of the central parallel
at the central meridian.

lo Mapping radius at the coordinate origin.

Vo Radius of curvature in the prime vertical at ¢o.

Po Radius of curvature in the meridian at ¢o.

Mo Meridional arc from the equator to ¢o.

Mo  Meridional arc from the equator to ¢.
Meridional arc from ¢ to ¢o (M is negative if Mo < Mo).

S Meridional arc from ¢ to ¢o scaled to the projection (s is negative if Mo <
Mo).

5.b.ii. Projection Constants.
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5.b.iii. Direct Transformation (®,A to N,E).

M, =a(Ayp— A, sin2¢ + A, sindg — A sin6gp)

M =M, -M,
3
My =
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M = M “tan ¢, (1 4e” cos’ ¢,)
) 24p,v:
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M = M ° tan g, (7 +4tan’ ¢,)
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M. = M’ (60tan* ¢, +180tan’ ¢, +61)
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504002V
s=k,(M+M,;+M,+M;+M;+M,)
y =(A=4,)sing,

AE =(r, —s)siny

E=E,+AE

N =N, +s+AEtan(%j

5.b.iv. Inverse Transformation (N,E to ®,A).

y:tan_l i
r,—N+N,

z:( 7 Jmo
sing,

s=N-N,—(E- Eo)tan[%j
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Computation of M is iterative:

1. Begin with an approximation of M, = ki

0

2. Compute the following:

M 3
M, =2
T by,
M M Ytan ¢, (L— 4 cos’ ¢,)
b 24p,v;
M. = M2 (5+3tan® ¢, —3e”—e* cos’ ¢,)
% 120p%v?
M _ M tang, (7 +4tan® 4,)
© 240p2v¢
M. = M/ (60tan* ¢, +180tan’ ¢, +61)
" 504002V

a

_F :[kiJ—Ma—MSE—M% ~M, —M, —M,

0

M =

oF

),
3. Add oM to Ma.
4. Repeat steps 2 and 3 until the absolute value of SM is less than

0.00005 (meters).
M=M,
M, =M, +M
Computation of latitude is iterative:

M
1. Begin with an approximation of ¢, = T"j (radians).
a

2. Compute the following:
-G, =M, —a(Ap, — A,sin2¢, + A, sindg, — A;sin6g, )

(%) =a(A, —2A, cos2¢, +4A, cosdgp, —6A, c0os6¢,)
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5p = —G,

G
o9 ),
3. Add ¢ to ¢,.

4. Repeat steps 2 and 3 until the absolute value of 6¢ is less than
0.0000005 seconds of arc.

¢=¢

5.b.v. Scale and Convergence.

Convergence (7 ) in Angular Units.
y=(1-4,)sing,
Scale Factor (K).

a

J1-e?sin® ¢,
a(l-e?)
o 3

(1-e?sin?g,)?

vV, =
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6. Linear Distortion at ¢,A.

a

J1—e?sin®¢

a(l —e?)

Vv =

3
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as 1 —e
R; = .pv=
6=VP 1—eZsin’g
h=H+N,
Lﬂzk( ¢ )—1
Re + 1

For linear distortion in nearest integer parts per million:

LD,y = int [round (LD = 10°,0))|

PP
7. Geocentric Coordinates.

Geocentric coordinates are 3D right-handed Cartesian with the origin at the
intersection of the equatorial plane and the minor axis of the reference ellipsoid.
The positive X axis lies in the equatorial plane and passes through the
Greenwich meridian (0° longitude). The positive Y axis lies in the equatorial plane
and passes through the meridian at 90°east longitude. The positive Z axis
passes through the pole at 90° north latitude. Relationships among geocentric
coordinates and geodetic coordinates are shown in Figure 1, where p is a point
outside the reference ellipsoid and hp is the ellipsoid height of p (positive from the
ellipsoid surface towards p).

Figure 1.
Geocentric and Geodetic Coordinates of Point P
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GNSS satellites are tracked in geocentric coordinates and transformations
between geocentric and geodetic coordinates are essential.

7.a. Direct Transformation (®,A,h to X,Y,Z).

(e}

J1—e?sin¢

X = (v + h)cosgcosi

V=

V¥ = (v + h)cos¢psind
Z =[v(1 —e?) + hlsing

7.b. Inverse Transformation (X,Y,Z to ®,A,h).

Y X
.3. - SIIH_l (—) = COS_]' (—)
VX? + Y2 VX? + Y2

Computation of latitude is iterative:

1. Begin with an approximation of

o=t ()

2. Compute the following:

a
Vg =
J1—eZsin2¢,
Z 4+ v, e’sin
¢ :mn_l( = ¢a)
VX + 72
ba =0

Repeat step 2 until the difference between ¢ and ¢, is less than 0.0000005
seconds of arc.

B VX2 +Y?
~ cos¢ v
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